20%。 值得注意的是,第三批领跑者中,P型双面、N型双面组件的应用规模合计超过3.4GW,显然,双面发电已经成为应用领域的重要趋势,对支架提出了新的要求。如果组件下方有横梁,会对反面造成遮挡,影响
、双玻组件生产工艺基础上,正信光电石墨烯多主栅组件将现有多主栅电池技术、石墨烯应用技术PERC、N型双面、黑硅电池工艺等现行前沿技术相融合,为产业加速实现降本增效再添动力。 产业化进程提速 不仅石墨烯
。其中,单晶硅的晶体结构完美,禁带宽度仅为1.12eV,自然界中的原材料丰富,特别是N型单晶硅具有杂质少、纯度高、少子寿命高、无晶界位错缺陷以及电阻率容易控制等优势,是实现高效率太阳电池的理想材料
,标志着晶体硅研发制造的最高水平。
作为IBC电池产业化领导者的美国SunPower公司已经研发了三代IBC太阳电池。其中,2014年在N型CZ硅片上制备的第三代IBC太阳电池的最高效率达到
仅在10%左右,但总体呈上升趋势。同时,由于N型电池切割仍存在技术难关,2018年叠瓦组件出货以单晶PERC为主。
各供应商出口组件目前以半片技术为主。由于叠瓦技术的成熟度及良率表现尚不
成本的性价比变高。
降本增效新贵,叠瓦大幕开启
叠瓦技术将电池片切片用导电胶互联,省去焊带焊接,减少遮光面积和线损,节省空间,比常规60型组件多封装13%的电池片,功率提升超20W以上,显著高于半片
度电成本,应用用于地表经过高反光处理(如刷白漆)的分布式电站则可显著提高项目的收益率。 P型PERC双面技术是自2015年新出现的双面技术1,相对传统的N型双面与异质结双面电池,PERC双面电池采用低成本的P型
展示重点。在传统单、双玻组件生产工艺基础上,正信光电石墨烯多主栅组件将现有多主栅电池技术、石墨烯应用技术PERC、N型双面、黑硅电池工艺等现行前沿技术相融合,成功使组件发电量增加6%,高温发电量衰降也
少得多。因此,我们将重点关注一体化双端叠层电池。 图8:典型的一体化双结叠层电池结构 底电池 底电池可以采用P型硅片或N型硅片。虽然大多数实验室项目都采用N型异质结电池,但P型电池其实
。此外,就目前的生产技术而言,这种方法所需要的改动也少得多。因此,我们将重点关注一体化双端叠层电池。 图8:典型的一体化双结叠层电池结构 底电池 底电池可以采用P型硅片或N型硅片
1.45GW,P型双面100MW,双面+半片200MW,N型双面831MW。半片技术中标2个项目合计200MW。叠瓦技术中标1个项目合计50MW(与单晶双面共同中标100MW,按平均分配估算叠瓦技术中标50MW
方案。 效率优先、技术领跑。该公司在采用传统的单晶单面固定式支架光伏发电组件基础上,大胆采用了行业先进的N型PERC双面双玻光伏组件、高效组串式逆变器和平单轴跟踪支架系统,较常规固定式支架光伏电站提升