的示意图。b) 对照组与处理组薄膜埋底界面的扫描电镜图像。c) 两组样品的X射线衍射谱。d) 薄膜顶界面的扫描电镜对比图像。e) 剥离后对照组与处理组薄膜锡3d轨道的X射线光电子能谱。f) 添加
里大学Wei
Zhang在期刊《Science Advances》发文,题为“Strain relaxation in halide perovskites via
2D/3D
perovskite heterojunction
formation”。该团队通过2D/3D钙钛矿异质结的形成来检验三维(3D)卤化物钙钛矿中残余拉伸应变的弛豫。2D钙钛矿在3D钙钛矿中诱导结构碎裂,促进
电池展现出更好的长期稳定性。研究内容:该研究专注于通过分子设计来提高钙钛矿-有机叠层太阳能电池的性能。科研团队通过精确调控分子结构,实现了受体的3D结构,这种结构不仅提高了光吸收和电荷传输效率,还有
独特性质。然而,学界对机械应变(包括钙钛矿中的残余应变)的认知仍不完善,且难以将应变效应与其他干扰因素有效分离。研究内容本研究通过构建二维/三维(2D/3D)钙钛矿异质结,实现了三维卤化物钙钛矿残余
示意图。c) CA-20、参比物和 1D 组分的固态 1D
NMR 光谱(I¹H/²⁰⁷Pb)。在 ²⁰⁷Pb 光谱中,绿色竖条表示对应 3D 钙钛矿的 ²⁰⁷Pb 峰,蓝色条带突出显示 1D 组分
钙钛矿上沉积 3D 钙钛矿形成 2D/3D 双层异质结构的示意图。f) 含和不含 2D-R 钙钛矿器件的载流子传输机制示意图。图 10. a) PEN/ITO/SP-NiO 和 PEN/ITO
CsPbI3 PQDs的部分XRD图谱。c)高分辨率Cs 3d XPS光谱。d)无SnI4和含SnI4的PQDs的PL光谱。e)经过和未经过SnI4处理的CsPbI3 PQDs的PL衰减曲线。f
)Ag电极和三个CIL的UPS光谱。(c)原始Ag表面上和PDINN/Ag、PDINN:F8 CuPc/Ag和PDINN:F8 CuPc/Ag的接触界面处的Ag 3d(左)和N 1 s(右)的
设计方法,该方法需要通过掺入降冰片烯的 3D 结构单元,将 3D
结构基序集成到熔环受体分子的中心核心或末端基团中,特别是 LLZ1、LLZ2 和
LLZ3。目的是通过改变这些分子的分子结构来
。综上所述,这项工作为开发低电压损耗和高 PCE 的 OSCs 提供了新的见解和研究方向。该论文近期以“3D‐Architectured
Acceptor with High
),以及掺杂样品中、、、和八面体的Bader电荷分析c)。空白样品和掺杂样品的X射线衍射图谱,以及最强衍射峰(220)的位移d)。元素映射e)以及Cs2NaLuCl6中Sb 3d、Ag 3d和Bi 4f
人”形象应运而生,生动彰显了上迈锐意进取的创新活力。创新的火花无处不在。上迈团队突破思维定势,巧妙融合光伏科技元素与生活美学,从夏日消暑的冰淇淋中汲取灵感。依托先进的3D打印技术,并紧密结合轻质