(对应着更可靠的散热功能),同时极大延长了逆变器整机的使用寿命。特别是电网阻抗检测算法的应用,使参数跟随实时电网抗阻状态自动优化控制成为可能,极大扩展了该系列逆变器的应用场景! 亮点2:光伏智能云系
部环境参数稳定时,其输出功率还会受所连接的负载的影响,研究表明,只有当连接的负载为某一恒定值时,即所谓的阻抗匹配,光伏组件输出功率才达到最大值,此时光伏组件所输出的功率为最大功率点。为了最大限度发挥光伏组件
、3# 的输出I-V 曲线和对应电阻负载1#、2#、3#的I-V 曲线,两者的交点即为光伏阵列的最大功率点。通过对这些曲线分析可知,除了在 Pa、Pb、Pc 点阻抗达到了阻抗匹配外,其他点都未
视为两个电阻。无遮挡时电池的阻抗小于二极管,电流通过电池串流动。当电池被遮挡时,会导致其内阻远大于二极管,电流从二极管流。如图三所示,一个二极管并联二十块电池,一个二极管的正向偏转电压大约是
量大价低的半导体硅,主要由电池片、焊带、背板、边框、及内含旁路二极管的接线盒等构成,如图1所示。
图1 晶硅光伏组件的外形图
光伏组件内部电池片的等效模型如图2所示,其中Rs为组件串联阻抗
、Rsh为组件自身阻抗。光伏电池本质上是一个电流源,只是这个电源流被二极管限定电压至0.5~0.7V。由于晶硅组件内部由多个电池片串联而成,因此组件输出电压大约为30~42V。
图2
种夏季最常见的逆变器报错及故障,希望在这个夏天,让电站光力全开!
一、对地绝缘阻抗过低
阴雨天气,套管等潮湿易进水;AC接线不当也可能导致个别机器进水;组件防水盒也可能被热坏了
这些问题
,最常见的报错信息就是对地绝缘阻抗过低。
现场检查组件的直流线缆和接地情况。
1、检查直流线缆
固德威售后部门统计,大部分的面板绝缘阻抗问题是直流线缆破损导致,包括组件之间的线缆,组件至逆变器之间
电站共有40个区,其中39个区是采用组串式逆变器,共835台。另有1个区采用的是集中式逆变器,共2台。如果发生电缆接地,那么在这两种逆变器上表现是不一样的。其中,组串式逆变器报绝缘阻抗告警低停运,而
集中式逆变器报绝缘阻抗告警但不停运,因此,处理方法也有所不同。
针对组串式逆变器,首先应该找到该逆变器,停运后将支路各mc4接头拔下依次测量对地电压,正常情况下(无接地现象)电压较低一般不会超过
或者振动,造成电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁;在电力传送过程中,谐波由于频率高,产生的阻抗大,因此会多消耗电能,造成电能生产、传输和利用的效率降低;谐波可
PWM波有畸变时,将影响逆变器的输出谐波与控制效果。提高开关频率与输出PWM电平数有助于降低PWM波形的畸变率,。
(2)并机谐波抵消能力:1个方阵多台组串式逆变器距离升压变压器距离不一样,线路阻抗
发生异常。 正常情况下,如果人体触碰光伏组件或支架,因为人体阻抗大于接地阻抗,流过人体的电流就很小,绝大部分电流从接地体流过(分流作用),从而可以避免人体受到伤害。但是,倘若人体有意或无意触
孤岛现象的概率几乎为零。
在文献 中,欧盟Dispower 项目研究了德国使用的带监测电网阻抗变化的反孤岛策略,并对带频率监测的光伏逆变器和电网电压进行了测试。结果表明,若电网处于低阻抗运行状态时
,逆变器的工作状态较为稳定;若电网处于高阻抗运行状态时,光伏逆变器检测阻抗的精度变差。从目前情况来看,对光伏电源反孤岛策略的标准并不统一,因此还未制定出完善的解决措施。
当前,世界范围内对孤岛检测方法
绝缘阻抗告警低停运,而集中式逆变器报绝缘阻抗告警但不停运,因此,处理方法也有所不同。 针对组串式逆变器,首先应该找到该逆变器,停运后将支路各mc4接头拔下依次测量对地电压,正常情况下(无