发电量的又一关键原因。这样就有约0.05-0.08元允许价差空间。 此外,如果再融合半片技术,常规全片组件有阴影和灰尘大片遮挡条件下,功率输出可能降至为零,同时极大增加热斑产生几率,而半片组件依旧能
发电量的又一关键原因。这样就有约0.05-0.08元允许价差空间。 此外,如果再融合半片技术,常规全片组件有阴影和灰尘大片遮挡条件下,功率输出可能降至为零,同时极大增加热斑产生几率,而半片组件依旧能保留
。天合智能优配的AI智能逆跟踪算法,可以自行调整最佳的跟踪角度,同时根据地形进行自我调整,避免阴影遮挡,融合全场景、自适应、自学习的双面组件+跟踪支架智能控制算法和业内最高效的组件配合,较常规的
完美结合。与传统天文算法相比,智能跟踪算法同时考虑了地面反射光和空气散射光的影响,进一步提高双面组件背面发电量效果。从展示的天合智能优配项目案例照片看,使用双面双玻组件的项目全部保证背面无支架遮挡。谢入金
降低组件的封装损失,组件功率平均提升5-10W。同时叠加双面技术,组件正面功率达到320W(60型),组件双面率大于75%。阴影遮挡时,Hi-MO3比整片组件阵列具有更高的发电量。此外,Hi-MO3
工作电流减半,有效降低组件的封装损失,组件功率平均提升5-10W。同时叠加双面技术,组件双面率大于75%。阴影遮挡时,Hi-MO 3比整片组件阵列具有更高的发电量。此外,Hi-MO 3产品还具有热斑温度更低等优势,为更低度电成本带来全新的选择。
提高发电效率。分离式太阳能发电系统,是在温室以外的空地上,将太阳能发电组件与温室分离布置,该方式技术简单、造价较低,但会造成土地浪费。
采用镶嵌式和独立式发电系统时,光伏发电板将遮挡部分光照进入温室内,会
布置,以避免在室内形成固定阴影带,导致室内有效种植面积的损失。同时,尽量将发电板布置于操作或通道区域。
存在的问题
太阳能发电系统与温室相结合时,要求其在发电同时还不能影响温室生产,同时,温室本身
。以100MW项目为例,度电成本可降低5%。智能逆跟踪算法可以根据地形进行自我调整,避免阴影遮挡,融合全场景、自适应、自学习的双面组件+跟踪支架智能控制算法和业内最高效的组件配合,较常规的方案设计可进
提高发电效率。分离式太阳能发电系统,是在温室以外的空地上,将太阳能发电组件与温室分离布置,该方式技术简单、造价较低,但会造成土地浪费。
采用镶嵌式和独立式发电系统时,光伏发电板将遮挡部分光照进入温室内,会
布置,以避免在室内形成固定阴影带,导致室内有效种植面积的损失。同时,尽量将发电板布置于操作或通道区域。
存在的问题
太阳能发电系统与温室相结合时,要求其在发电同时还不能影响温室生产,同时,温室本身
差异遮挡:这里地势差异要考虑到组件南北、组件东西是否造成阴影遮挡;同排方阵不同子阵高度引起遮挡;同时楼层间的阴影也要考虑。 泥浆、鸟粪、沙尘等遮挡:电站建好后泥浆、鸟屎、沙尘等都会对组件造成遮挡
介绍,这两种不同的安装方式将影响光伏电站效率。一般情况下,光伏电站的设计原则,是在冬至日上午9时之后下午3时之前无阴影遮挡,但城市屋顶在早晨和傍晚将不可避免地会出现阴影遮挡光伏组件的现象,对电站总体