导读: 他们发现,一个光子会产生一个黑暗的量子阴影状态,随后,可以从中有效地捕捉到两个电子,以产生更多的能量,这要采用半导体并五苯(pentacene)。利用这种机制,可以把太阳能电池效率提高到
一些问题,因为要考虑设计一种新材料或设备。
为了规避这个问题,朱晓阳和他的小组已经找到一种替代方法。他们发现,一个光子会产生一个黑暗的量子阴影状态,随后,可以从中有效地捕捉到两个电子,以产生更多的能量
导读: 到目前为止,太阳能最大的问题就是,太阳能电池输出的电量并不等于它们吸收的光子数量(光粒子)。但是,由于该新型太阳能电池创造性的应用了氧化锌、硒化铅和一点金,它的外量子效率达到了114%左右
并不等于它们吸收的光子数量(光粒子)。但是,由于该新型太阳能电池创造性的应用了氧化锌、硒化铅和一点金,它的外量子效率达到了114%左右。
但是,麻省理工学院注意到,即便太阳能变得足够廉价并适合大规模生产
,我们感到非常兴奋是可以参与这项工作。
更多信息:论文《单线态激子裂变敏化红外量子点太阳能电池》(Singlet Exciton Fission-Sensitized Infrared Quantum
创造单线态激子,经过快速激子裂变,产生配对三重线态(triplets)。最重要的是,我们确定,这些三重线态激子可以电离,这要采用有机/无机异质结面(heterointerface)。我们报道的内部量子
,还有一块背面电池,具有较小或较低的带隙聚合物电池,连接是采用专门设计的夹层。 电流-电压特性和外部量子效率(EQEs),属于常规和倒置的单电池设备。 对比单层设备,这种串型设备可以更有
记载。 1839年法国科学家E.Becquerel发现液体的光生伏特效应,开启了人类太阳能利用的量子时代。 随着页岩气的经济竞争力增加、中国带动太阳能光伏产业的发展。可以预计2030年后,天然气
染料敏化太阳能电池的工艺中添加一个简单的步骤,也能适用其他类型的有机与量子点(quantum-dot)技术太阳能电池。
研究团队在所领导和室领导的大力支持下,在国内率先开展了半导体纳米材料下转换晶体硅高效太阳能电池的研究,通过利用半导体纳米材料的尺寸量子限制效应来调节能带宽度,增加对短波长波段光的响应。 该课题组目前
义。 太阳能量的收集和转换 在很多方面,太阳能电池的工作原理类似于植物通过光合作用转化太阳能的过程。这两种系统都受量子力学的约束。来自太阳的能量以能量包的形式表示为E=hv,其中E代表能量,h是普朗克
导读: 多伦多大学(University of Toronto)的研究小组创造了第一款双层太阳能电池,制备成分为吸光纳米粒子,称为量子点(quantumdots)。量子点可进行调节
,以吸收不同部分的太阳光谱,这只需改变它们的大小,量子点已经被看作是一种很有前途的方法。
多伦多大学(University of Toronto)的研究小组创造了第一款双层太阳能电池,制备成分为吸光
导读: 来自多伦多大学、阿卜杜拉国王科技大学和宾州州立大学的研究人员共同研发出了基于胶体量子点(CQD)的转换效率最高的太阳能电池。
(译/Laven)来自多伦多大学、阿卜杜拉国王
科技大学和宾州州立大学的研究人员共同研发出了基于胶体量子点(CQD)的转换效率最高的太阳能电池。
这项成果发表在Nature Materials的最新一期。
量子点是一种可以吸收光然后将光转化成