化学稳定性高等优点。在复盖硫化物量子点的情况下,虽然石墨烯的功率转换效率比通用的矽电池低4.2%,但今后在特殊用途中将具有竞争力。 在2012年的早些时候,美国佛罗里达大学物理学研究人员表示,通过对
索比光伏网讯:石墨烯具有优异的电学、热学、结构和力学性能,以及完美的量子隧道效应、优异的电导率等一系列特殊性质,并同时具备价格低廉的有点,被业界不便认为在下一代电晶体、透明导电膜、储能技术、化学传感
索比光伏网讯:据报道,美国国家可再生能源实验室(NREL)的研究人员今年年初宣布采用量子点材料制造出了外量子效率(EQE)超过100%的太阳电池,从而证实了多激子产生(Multiple
点太阳电池的外量子效率首次突破100%。由于未经优化,电池转换效率仅达到4.5%。虽然效率相对较低,但在该太阳电池光电流中展示了多激子的生成仍然具有重要意义,这一结果为提高太阳电池效率开辟了一条新的路径
先天属性仍然保持不变,是一种有着显著优势的复合材料。麻省理工学院的团队已经证实,电极分别基于石墨烯与ITO的设备在效率方面具有可比性。在覆盖硫化物量子点的情况下,虽然石墨烯的功率转换效率比通用的硅电池低
点的"面",使其厚度成为数m-10m,并在其两面上装上电极,而藉由将量子点作最适当的配置,可将现行一般太阳能电池所无法捕捉的红外光转换成电力,进而可大幅提升太阳能电池的光电转换效率。
实用化(量产)。报导指出,石桥晃教授等人所研发的新技术主要是顺着光前进的方向,依序排列多种半导体薄膜,以借此依序吸收紫外光、可视光和红外光。据报导,目前虽有藉由依序堆叠不同尺寸的量子点(Quantum
成为数m-10m,并在其两面上装上电极,而藉由将量子点作最适当的配置,可将现行一般太阳能电池所无法捕捉的红外光转换成电力,进而可大幅提升太阳能电池的光电转换效率。
指出,石桥晃教授等人所研发的新技术主要是顺着光前进的方向,依序排列多种半导体薄膜,以藉此依序吸收紫外光、可视光和红外光。据报导,目前虽有藉由依序堆叠不同尺寸的「量子点(QuantumDot;由化合物半导体
m-10m,并在其两面上装上电极,而藉由将量子点作最适当的配置,可将现行一般太阳能电池所无法捕捉的红外光转换成电力,进而可大幅提升太阳能电池的光电转换效率。
教授等人所研发的新技术主要是顺着光前进的方向,依序排列多种半导体薄膜,以借此依序吸收紫外光、可视光和红外光。据报导,目前虽有藉由依序堆叠不同尺寸的「量子点(Quantum Dot;由化合物半导体所制成
研究的量子点构造可将以前无法通过半导体晶体输出能量的波长的光转换为电能,也是一项备受期待的可大幅提高转换效率的技术。 (2)改进光线照射到太阳能电池的方法 光伏发电可以采用的方法是,利用
进行了准确定义,即将光能直接转换为电能的发电方式。一般采用基于光伏效应的太阳能电池。 截至2012年,市场上销售的一般的晶体硅太阳能电池的最高转换效率已达到20%,各研究机构及厂商还在
。胶体量子点薄膜光电转换率达7%来自加拿大多伦多大学和沙特阿拉伯阿卜杜拉国王科技大学的研究人员借助在胶体量子点(CQD)薄膜领域发展中获得的突破,制成了迄今为止效率最高的胶体量子点太阳能电池。研究人员
电流-电压(I-V)和外量子效率(EQE)特性。I-V测量在标准测试条件(STC,25℃,AM1.5G谱和1000W/m2)下进行。结果和讨论表面形貌用原子力显微镜(AFM)观察低铁玻璃上抗反射涂层的
光透射谱。T()uncoated和T()coated用分光光度计测量。EQE()uncoated是没有ARC的太阳能电池的外量子效率,用QE测试仪测量,而EQE()coated是有ARC的太阳能电池的
AshokK.Sood博士表示,单结量子阱太阳能光伏电池在非聚光条件下的理论转化效率高达45%。5.可挠式非晶硅太阳能光伏电池日本媒体近日报导,TDK已研发出一款可挠式太阳能电池,藉由光学设计的改良,该款太阳能光伏电池在