电池、钠离子电池等中长时间储能技术,混合电池电容、液流电池等高效长寿命低成本储能技术等方向的研究;加强高效低成本晶硅电池、薄膜电池、叠层电池等制备技术,太阳能碳转化、光伏建筑一体化(BIPV)等太阳
了钙钛矿材料中光机械诱导分解效应这一关键失效机制,并创新性地提出石墨烯-聚合物复合增强策略。通过将单层整片石墨烯与聚甲基丙烯酸甲酯(PMMA)进行界面耦合,成功制备出具有超高稳定性的钙钛矿薄膜太阳
在新型光伏技术路线上,钙钛矿太阳能电池因兼具高转换效率、低成本及柔性轻量化等优势备受瞩目。然而,材料稳定性不足始终制约着其产业化进程——这个被誉为"光伏新星"的材料,在光照、高温等条件下极易发生结构
,旨在开发钙钛矿硅薄膜太阳能组件,有望提供行业领先的耐用性和效率组合。该公司报告称,其光伏组件目前达到28%的效率,预计到2025年底将超过30%,即Tandem
PV所说的比普通硅太阳能电池板高
首席执行官Scott
Wharton说。“随着全球对清洁能源的需求激增,Tandem PV正在加紧满足这一需求——提供更强大、更可持续、美国制造的下一代太阳能。”Tandem
PV成立于2016年
近日,广东省住房和城乡建设厅发布关于征求《建筑太阳能光伏系统技术标准》(征求意见稿)意见的函。本标准适用于广东省新建、扩建、改建建筑光伏系统的设计、安装施工、验收和运行维护;在既有建筑上增设及改造的
建筑光伏系统也应按照本标准执行。文件明确建设建筑光伏系统应充分考虑广东省建筑风貌要求,不得破坏当地特色建筑的风格及形式。如外立面采用碲化镉光伏薄膜玻璃幕墙,屋面采用碲化镉光伏薄膜玻璃和多晶硅光伏板组合
铜铟镓硒底部电池与钙钛矿顶部电池相结合,实现了更高的光电转换效率。其中,钙钛矿吸收层由双方的联合实验室精心生产。值得关注的是,薄膜太阳能电池在生产过程中能耗和材料需求较低,对环境的影响较小,而铜铟镓硒
薄膜还可应用于柔性基板,进一步提升了其性能表现。HZB太阳能部门发言人Rutger
Schlatmann对该技术的未来发展充满信心,表示通过CIGS-钙钛矿组合,未来有望实现超过30%的效率
,已围绕太阳能转换与催化、零碳能源转化与存储、能源低碳转化与多能互补等三大研究集群开展一系列科研项目,去年1月组建钙钛矿太阳能电池技术团队。制备高质量钙钛矿薄膜是实现高效电池的关键因素。研究团队技术
狭缝涂布已成为大规模生产钙钛矿太阳能电池 (pero-SC) 和太阳能模块 (pero-SM)
的必不可少的方法。然而,由于钙钛矿在成膜过程中结晶动力学不可控且相变复杂,狭缝模头涂层生产的钙钛矿
太阳能电池和钙钛矿太阳能模组的能量转换效率仍然远远落后于旋涂器件。鉴于此,2025年2月10日苏州大学Guiying
Xu&Yunxiu
Shen&李耀文于AFM刊发通过溶剂工程控制狭缝模头
。钙钛矿材料,尤其是金属有机—无机杂化钙钛矿,因其优异的光电性能成为太阳能电池领域的研究热点。然而,传统的旋涂制备方法虽然能够获得高质量的薄膜,但其难以满足大规模生产的需求。相比之下,印刷制备技术具有
索比光伏网获悉,近日,中国科学院化学研究所研究团队在印刷制备钙钛矿光伏器件方面取得重要进展,为提升钙钛矿太阳能电池的光电转换效率提供了新思路。这一突破性成果有望推动钙钛矿光伏技术的产业化应用
自组装分子(SAMs)作为光管理纹理基底上的空穴传输层(HTLs),在高效倒置钙钛矿太阳能电池(PSCs)中具有巨大的商业潜力。然而,SAMs在粗糙基底上的不均匀分布和无序堆积加剧了界面能量损失
外偶极,能够形成紧密组装且面朝上的HTLs,从而在基底上实现致密覆盖和高效的空穴提取。此外,覆盖4PABCz的基底的独特构型有效调控了钙钛矿薄膜的结晶,并释放了残余应力。因此,在FTO基底上的倒置
晶体均匀性高的均匀钙钛矿薄膜。因此,柔性钙钛矿太阳能电池(FPSC)实现了创纪录的25.54%的功率转换效率(PCE)(经认证为
25.44%)(基于1.01 cm2),具有出色的可重复性。有效面积
柔性钙钛矿太阳能模组的性能仍然不如刚性钙钛矿太阳能模组,这主要是由于打印过程中钙钛矿胶体转移无序导致结晶度和均质性差。鉴于此,2025年2月7日南昌大学胡笑添&陈义旺于AFM刊发协同宏观-微观调控