显著提升了SAM层的处理稳定性和界面质量。图2:交联SAM膜的溶剂稳定性与界面特性分析图2通过系统的实验表征揭示了交联SAM膜在极性溶剂环境下的稳定性优势。图4:交联SAM基钙钛矿太阳能电池性能与稳定性突破图4展示了基于交联SAM的钙钛矿太阳能电池的卓越性能。
此前,钙钛矿材料因耐久性不足受质疑,但SwiftSolar通过独创气相沉积技术,使组件实现连续3000小时高温运行零衰减,且将钙钛矿层沉积时间压缩至5分钟内,解决了传统工艺速度慢、批次不连贯的难题。
这些效果共同降低了杂质水平和缺陷密度,从而形成高度均匀和耐用的钙钛矿层。通过揭示驱动钙钛矿前驱体降解的基本机制并提出实用、可扩展的解决方案,这项工作代表了朝着高效、稳定钙钛矿太阳能电池工业规模制造迈出的潜在一步。
2025年第三季度,美国太阳能制造商康宁公司位于密歇根州的工厂已启动硅锭和硅片生产。这一消息是在该公司公布在密歇根州建设太阳能硅锭和硅片制造厂计划近一年后传出的,该厂毗邻其子公司HemlockSemiconductor公司的多晶硅制造厂。康宁公司总裁兼首席执行官WendellWeeks表示:“过去18个月里,我们在密歇根州赫姆洛克的多晶硅制造厂旁,建成了美国最大的太阳能硅锭和硅片工厂,这是一项重大举措。”康宁公司硅片厂投产也标志着美国太阳能硅片生产在近十年后重现。
钙钛矿异质结的合理设计对提升钙钛矿太阳能电池的效率和运行稳定性至关重要。然而,传统方法在纳米尺度上精确控制界面相纯度及实现共形异质结覆盖方面面临挑战。本研究香港城市大学朱宗龙、伦敦帝国理工学院NicholasJ.Long和中南大学李博等人提出了一种“软-软”相互作用引导策略,通过在有机阳离子溶液中引入二甲基硫醚作为软路易斯碱添加剂,调控钙钛矿异质结的形成。
透明导电氧化物作为钙钛矿太阳能电池的基底,长期以来被认为具有良好稳定性,因此其对器件寿命的影响常被忽视。蒸发的钇有效锚定了FTO中的部分晶格氧,防止元素解离。此外,YO在粗糙FTO表面实现了保形沉积,提高了界面粘附能,建立了有效的离子扩散和载流子非辐射复合损失屏障。该策略显著增强了PSC的结构完整性,大幅提升了操作稳定性。
更重要的是,由于钙钛矿体相的本征特性,这种电子积累效应延伸至整个钙钛矿吸收层,使其平均电子浓度提升约40倍,从而大幅增强了电子电导率,降低了传输损失。Figure4展示了最终器件的卓越性能和稳定性。
而引入DCl层后,PLQY和QFLS值大幅恢复,证明DCl有效抑制了C60诱导的复合损失。未经极化时,DCl处理的单结钙钛矿电池效率从19.0%提升至21.9%(图a),大面积器件效率达21.0%(图b)。在钙钛矿/硅叠层电池中,DCl处理使效率从28.4%提升至30.5%,经极化后进一步达到31.1%的认证效率。
越南4月15日颁发的第768/QD-TTg号决定批准了《2021-2030年国家电力发展规划》的调整,明确了该国电力的总容量和结构。c)电力发展规划必须基于科学依据,具有继承性、动态性和开放性。建设智能电网系统,有能力安全、高效地集成和运行大规模可再生能源。集中式太阳能项目必须配套安装储能电池,最小比例为装机容量的10%,持续时间2小时。同步发展LNG进口仓储和港口系统与规划中的电厂。陆上和近海项目空间布局在省级规划中确定。
除单结器件外,偶极钝化技术对全钙钛矿叠层太阳能电池也具有深远意义。通过解决窄带隙子电池中最棘手的损耗问题之一,该方法为钙钛矿叠层器件实现此前被认为难以企及的效率铺平了道路,预示着高效、可规模化的太阳能利用新时代的到来。