:光伏储能系统 (图片来源:Selectronic Austrlia)
储能光伏系统指的是光伏阵列匹配蓄电池来改变传统的光伏系统对于负载的输电量和放电时间。由于储能系统的引入,峰值区间内负载不能消化的
:DC Coupling 拓扑结构 (图片来源: SMA-Australia)
DC Coupling 拓扑通常包含如下部分:光伏组件,调节器(Regulator)或叫充电控制器(Charge
电价与太阳能峰值小时数几乎完全吻合;对于大型电站系统,追求系统发电量的最大化正是系统拥有者的追求目标。于是,oversize组件阵列再一次的被关注起来,本文也将较为客观分析oversize和
拥有双MPPT(之前的逆变器也没有现在那么先进)追踪技术的并网逆变器就显得实惠很多。不想顶着高额售价来享受高科技的用户通常会选择购买一台偏大的逆变器(比如说5kW)来匹配他们较小(比如2kW)的组件阵列
或者鸟粪,如果不懒惰,定期清理(请在清理的时候断开组件和逆变器的连接,对于数目较多的阵列考虑断开组串间的连接),也没什么问题。我们主要来讨论下动态阴影的解决方案。
1. 在安装前的实地考察,通过专业
等。主观阴影是由附近障碍物阻挡了阳光直射而造成的阴影覆盖。客观阴影是不可避免的但是主观阴影却可以通过合理的设计,安装以及定期清理来有效改善。
静态阴影特指在组件表面玻璃上的覆盖物,如鸟粪,黏着的树叶
作用。然而,组串式逆变器同样面临一个不可避免的挑战,就是如何调节和限制因为无法预测的阴影覆盖对于阵列输出最大功率点的影响。纵然多MPPT可以相对的改善被遮挡的组件或组串对于全系统的影响,可是由于组串式
%以上,其实他们最大的挑战是多波峰和光照陡增情况。多波峰的意思是在一个阵列的功率-电流或功率-电压曲线图中,出现了多个功率峰值。其形成的原因多种多样,其中之一是因为部分组件因为遮挡而正向偏转了旁路二极管
光伏组件上端到后排光伏组件下端连线之间的阵列间距区域,任何一处空间的光资源辐射量均没有达到无遮挡水平面的光资源辐射量。这是因为,光伏阵列之间的任何一处空间区域,都会存在光照损失,这些光照损失,又分
影响。 本文选择江苏省南京市作为光伏项目的研究地点,在PVsyst里面建立一个50kW的光伏系统模型。建模如下,选用280Wp的单晶硅光伏组件,光伏组件以23倾角竖向单排安装,前后排阵列的中心间距经
。 2)混凝土平整屋面光伏阵列间距设计 《光伏发电站设计规范》中给出平整场地光伏阵列不被遮挡的阵列中心间距计算公式: 式中:为阵列斜面长度,为组件倾角,为项目所在地纬度
布置面积稍大,但是这里面存在一些不确定的因素,比如说前后排之间裕度取值,会导致面积上有一定差异。如果南北宽度一定、道路长度确定,实际上面积增加只是阵列东西间距增多引起。关于占地面积的探讨,可以参考《光伏组件
12-1 类型三:光伏组串设计一行一串但上下排分开模拟
图12-2 类型三:同样组件竖向安装,同时单行串联,但上下排分开模拟
将光伏阵列中的上排和下排分开模拟后,上排光伏组串阴影损失小
遮挡阴影分析,通常是采用障碍物和组件的高差乘以阴影系数,即得出阴影范围。但对于复杂情景,无论是组件的阵列间距还是障碍物的阴影分析,都难以计算。应用光伏软件PVsyst进行的阴影分析主要用来分析阴影对
摘要:
本文探讨了一种连续的南北坡混凝土屋面上光伏方阵的优化设计。在本文中,通过光伏阵列的间距设计、光伏组件倾角的设计、影响光伏方阵发电量的输出几项因素等几个方面,对比了原有的光伏组件平铺在屋面
差应为
代入阵列间距计算公式
,整理得
当为南坡时,为负;当为北坡时,为正。
有上图可看出,位于北坡的光伏组件若与南坡组件同一倾角,则光伏阵列的间距将根据坡度计算增大