题为《染料敏化镧系金属掺杂上转换纳米粒子》(Dye-sensitized lanthanide-doped upconversion nanoparticles)的Tutorial Review论文
上转换纳米晶吸光范围窄和吸光能力弱的难题为切入点,评述了近年来国际上在染料敏化镧系金属掺杂上转换发光纳米晶领域的重要进展,深入阐述了染料和纳米晶的有机-无机界面上F?rster和Dexter能量传递
一层添加了纳米粒子的聚合物材料,能让海水淡化滤膜具备吸收阳光、自行加热海水的功能,使淡化过程无须用电。
美国赖斯大学研究人员在新一期美国《国家科学院学报》上报告说,这是该校纳米技术水处理中心第一项
能耗比传统的热蒸馏要低,但仍然很可观。
研究人员利用市面上普通的纳米炭黑粒子,结合多孔聚合物研制出一层特殊材料,放置在滤膜表面。这层材料能吸收80%的阳光能量,只通过太阳能就可以加热海水、产生
的具有硅谷气质的研发团队。经过两年多时间的摸索和不计其数的DOE,我们建立了上千种的配方体系。现在宜兴总部的研发实验室每周都有几十种玻璃配方、纳米粒子组合及有机体系进行一轮轮DOE、不断扩充我们的
、银粉、有机载体等一道道坎。好在我读博士期间的课题就是微纳米材料的开发和应用,让我一开始就聚焦在正银浆料最核心的部分。正银浆料开发需要大量的资金投入,从研发设备及测试平台的搭建、各种原材料的采购到人才的
为氢气,他们专门设计了催化剂和溶液的组合,可以使用太阳能作为能量源进行这种转化。团队在他们的实验中使用不同类型的生物质:木材、纸和叶片不需要进行任何预处理,使用纳米粒子在阳光下可以直接发生反应。该技术
纤维素的化学利用富有挑战性。新技术使用简单的光催化转化过程。将催化纳米颗粒加入到悬浮有生物质的碱性溶液中,将其放置在实验室中模拟太阳光的灯下,溶液即非常理想地吸收灯光并将生物质转化为气态氢,之后可从顶部
,则是则由氧化铜纳米粒子组成,专门吸收太阳光线中的蓝色光。我们都知道,蓝色光是从来不被普通的硅太阳能面板所吸收的。
实验结果表明,通过这两种材料的组合,新型太阳能面板对太阳光线的利用率将提升至 40
,这位叫 Bengt Svensson 的教授研发的新型太阳能电池,通过运用纳米技术,将两种不同类型材料层融合起来,从而吸收更多太阳光线。
具体做法如下:太阳能电池的第一层由常规的硅组成;第二层
,则是则由氧化铜纳米粒子组成,专门吸收太阳光线中的蓝色光。我们都知道,蓝色光是从来不被普通的硅太阳能面板所吸收的。实验结果表明,通过这两种材料的组合,新型太阳能面板对太阳光线的利用率将提升至40%。这与
Live报道,这位叫Bengt Svensson的教授研发的新型太阳能电池,通过运用纳米技术,将两种不同类型材料层融合起来,从而吸收更多太阳光线。具体做法如下:太阳能电池的第一层由常规的硅组成;第二层
Svensson 的教授研发的新型太阳能电池,通过运用纳米技术,将两种不同类型材料层融合起来,从而吸收更多太阳光线。具体做法如下:太阳能电池的第一层由常规的硅组成;第二层,则是则由氧化铜纳米粒子组成
,发电效率提升一倍。Bengt Svensson 教授对媒体表示:「与现在那些成本高昂且有毒的太阳能电池相比,新型纳米太阳能电池不仅是世界最高效的太阳能电池,且对环境十分友好。」此外,还需一提的是
纳米粒子组成,专门吸收太阳光线中的蓝色光。我们都知道,蓝色光是从来不被普通的硅太阳能面板所吸收的。实验结果表明,通过这两种材料的组合,新型太阳能面板对太阳光线的利用率将提升至 40%。这与现在的常规
Bengt Svensson 的教授研发的新型太阳能电池,通过运用纳米技术,将两种不同类型材料层融合起来,从而吸收更多太阳光线。具体做法如下:太阳能电池的第一层由常规的硅组成;第二层,则是则由氧化铜
明尼苏达大学的科学家团队发明了一种基于发光太阳能集中器(LSC)的光伏窗户,它充分利用硅纳米粒子的光学特性,只需在玻璃上植入硅纳米粒子,就能实现太阳能发电。能吸收太阳能的窗户,也叫光伏窗户,是可再生能源技术的
前沿领域。光伏窗户能充分挖掘建筑的潜力,在不破坏建筑美感的同时,还能满足人们的能源需求。科学家将硅纳米颗粒植入到LSC里,当太阳光线照射在窗户表面,LSC能吸收太阳光线中的有效光线,并将光线反射到硅纳米粒子
团队发明了一种基于发光太阳能集中器(LSC)的光伏窗户,它充分利用硅纳米粒子的光学特性,只需在玻璃上植入硅纳米粒子,就能实现太阳能发电。能吸收太阳能的窗户,也叫光伏窗户,是可再生能源技术的前沿领域
。光伏窗户能充分挖掘建筑的潜力,在不破坏建筑美感的同时,还能满足人们的能源需求。科学家将硅纳米颗粒植入到 LSC 里,当太阳光线照射在窗户表面,LSC 能吸收太阳光线中的有效光线,并将光线反射到硅纳米粒子