表面工程技术和界面研究,主要研究耐高温防护层和纳米多层膜电磁功能材料,电弧等离子体技术及其在表面防护上的应用、卫星回收天线耐高温隔热涂层均获1977年辽宁省重大科技成果奖;
返回地面式人造卫星、中速率遥测
热天线分获1986年国家科技进步特等奖和三等奖;
纳米复合电磁功能材料原理开发获1991年中科院科技进步一等奖;
纳米复合电磁功能材料应用技术获1997年中国航天工业总公司科技进步二等奖。
公开
导读: 多伦多大学(University of Toronto)的研究小组创造了第一款双层太阳能电池,制备成分为吸光纳米粒子,称为量子点(quantumdots)。量子点可进行调节
纳米粒子,称为量子点(quantumdots)。量子点可进行调节,以吸收不同部分的太阳光谱,这只需改变它们的大小,量子点已经被看作是一种很有前途的方法,可以制备低成本太阳能电池,因为这些粒子可以喷涂
翻一番,并使它能够开发一些方法,制造更便宜、更高效的太阳能电池。 电源墨水:创新之光公司制造了一种悬浮硅纳米粒子的黑色墨水。 杜邦公司已经是最大的太阳能电池板材料供应商之一,销售的产品
日本的同行通过将金纳米粒子用于有机光电太阳能电池,助其增强了光吸收的能力,极大地提高了电池的光电转化率。
在新近出版的美国化学学会《纳米》杂志上,加州大学洛杉矶分校亨利萨缪里工程和应用科学学院材料学
和工程教授杨阳(音译)领导的研究小组发表文章,介绍了他们如何将金纳米粒子层植入一个串联的高分子太阳能电池的两个光吸收区中,形成了特殊三明治结构的电池,从而收获到更宽太阳光谱的光能。
研究人员发现
能源的半导体纳米粒子。这些粒子可以喷涂到各种表面,包括塑料。这使得太阳能电池的生产成本更低且更耐用。 在多伦多大学举行加拿大纳米技术研究讲座的Ted Sargent教授表示:我们研究出了如何将这种钝化
让其表面钝化(不易与其他物质发生化学反应),研制出了迄今转化效率最高(达6%)的胶体量子点(CQD)太阳能电池。这项研究发表于近期的《自然材料(Nature Materials)》期刊。
吸光纳米粒子
量子点是纳米尺度的半导体,能捕捉光线并转化为能源,可被用于制造比硅基太阳能电池更便宜、更经久耐用的太阳能电池。为解决将量子点更紧密结合,提高转化效率的问题,学者们利用次纳米级原子的配位体在每个
低成本制造太阳能电池。EnSol公司表示,目标是在2016年之前实用化。
这是一种将直径为10~100nm的纳米粒子混入透明介质中,并在玻璃底板上涂布极薄的一层而成的薄膜太阳能电池。据称,这种纳米粒子
。
EnSol公司此次未公开纳米粒子的成分。不过,莱斯特大学的宾斯教授在接受《日经电子》采访时介绍,纳米粒子不是(称为量子点的)GaAs等半导体粒子,而是金属粒子,还可将其表面等离子体共振(SPR)效果用于
导读: 由于具有核壳结构的上转换纳米粒子(UCNPs)可以显著增强光致发光效率,所以其在光学成像引导生物成像、治疗学、防伪和太阳能电池方面有很好的应用前景。一般都是外壳涂层消除了淬灭点,并从周围的去
活化剂(配体、溶剂)中分离出核,从而有效抑制表面相关的去活化。
【引言】
由于具有核壳结构的上转换纳米粒子(UCNPs)可以显著增强光致发光效率,所以其在光学成像引导生物成像、治疗学、防伪和
导读: 由于具有核壳结构的上转换纳米粒子(UCNPs)可以显著增强光致发光效率,所以其在光学成像引导生物成像、治疗学、防伪和太阳能电池方面有很好的应用前景。一般都是外壳涂层消除了淬灭点,并从周围的去
活化剂(配体、溶剂)中分离出核,从而有效抑制表面相关的去活化。
【引言】
由于具有核壳结构的上转换纳米粒子(UCNPs)可以显著增强光致发光效率,所以其在光学成像引导生物成像、治疗学、防伪和
化学气相沉积法是利用辉光放电的物理作用来激活粒子的一种化学气相沉积反应,是集等离子体辉光放电与化学气相沉积于一体的薄膜沉积技术。在辉光放电所形成的等离子体场当中,由于电子和离子的质量相差悬殊,二者通过
,减少O2、N2等杂质引入,利用H 稀释技术制备高质量钝化层;二是使用叠层技术,由于氢化微晶硅或氢化纳米硅材料光致衰退效应不明显且带隙比氢化非晶硅窄,因此叠层时可以扩展光谱响应范围。文献中制得的