芬兰阿尔托(Aalto)大学的研究人员于2010年11月中旬宣布,开发出一种快速实用的新方法,可应用于太阳能电池,使之制造无反射的自洁表面,可以提高太阳能电池效率。该方法已在《先进材料
(AdvancedMaterials)》杂志上发表。
此方法涉及采用深度反应离子蚀刻方法,在硅表面制造金字塔形的纳米结构。然后,将硅晶片作为模板来创建弹性印记,将原始的纳米结构复制到宽范围的聚合物上。
它不
发表在最新一期应用化学(Angew. Chem)杂志上。 染料敏化太阳能电池的优点在于其转化效率高,制作工艺简单,生产成本低。电池采用多孔的二氧化钛纳米晶体材料作为基板,上面覆盖吸收光
型之后的下一代太阳能电池。 EnSol公司与莱斯特大学的分工为,莱斯特大学负责开发并供应纳米粒子,EnSol则利用纳米粒子制造电池单元。尽管目前只能在真空装置中制造层叠各种材料的小单元,但在不久的
,并已经在大面积的、卷到卷的印制系统上实验。如果能够被应用到更多种类的聚合材料,就能产生一个更快捷和便利的方式制造塑料太阳能电池,并应用到移动电子设备、集成到建筑材料中的太阳能光电板和智能纤维
,因为如果这些聚合物在纳米级别没有排列得很好,电子就不能跑出电池,制造电流。研究人员现在使用后印制技术来达到这一排列。来自密歇根大学的研究人员希望设法去除这些步骤,从而降低制造成本和复杂度。
我们的
(Line Coater)涂布三菱材料的纳米油墨后加热形成。非晶硅型膜和微晶硅膜与原来一样仍采用真空工艺。 组合使用涂布工艺在1.1m1.4m底板上形成串联构造薄膜硅型太阳能电池时,稳定化前的转换效率达到
)大学的研究人员于2010年11月中旬宣布,开发出一种快速实用的新方法,可应用于太阳能电池,使之制造无反射的自洁表面,可以提高太阳能电池效率。该方法已在《先进材料(AdvancedMaterials
)》杂志上发表。
此方法涉及采用深度反应离子蚀刻方法,在硅表面制造金字塔形的纳米结构。然后,将硅晶片作为模板来创建弹性印记,将原始的纳米结构复制到宽范围的聚合物上。
它不同于光滑的硅表面会反映散乱的
成本来改善热电材料的性能。他补充说。
目前,波士顿学院和麻省理工学院的研究者们寻求在热轧过程中防止晶粒增长,这也正是half-Huesler热传导率仍然较高的原因。
当晶粒的平均大小达到100纳米
导读: 一个研究团队已经成功改良一种普通半导体材料的热电性能高达90%,开启了通向更加清洁、能效更高的汽车排气系统、发电厂和太阳能技术的可能性。
一个研究团队已经成功改良一种普通半导体材料的热电
题为理解和控制太阳能转换:纳米结构和效率之间的关系的主题演讲中,描述了使用有机材料制造太阳能板的可能性。他说,轻质的可回收塑料制品将代替沉重的昂贵的硅,不像笨重的硅材料那样,有机材料可以每天生产成千上万
来说薄膜太阳能电池基本上都是使用坚固的玻璃材质进行制造,这样大大限制了便携式太阳能电池的发展。尽管目前存在柔性的版本但是需要非常专业的制造工艺和特殊的材料。现在斯坦福大学的科学家发明一种能用标准材质打造的柔性超薄
了300纳米的镍层,这样使用标准的制造工艺就能非常完美的解决柔性超薄的产品出现,同时这种三明治类型的结构设计相比较传统的太阳能的转换率更好,能够在几秒的时间内就瞬间加热到90摄氏度以上。
可高达15.2%,而厚度少于100纳米的半透明电池电池的平均转换效率微高于10%。
SSE工艺的特点在于温室流程、迅速结晶、大面积均匀沉积、薄膜厚度控制、超级平滑以及多功能性。这些特点均令SSE工艺
适用于生产混合钙钛矿薄膜的卷到卷可伸缩工艺。论文表示。
研究小组表示,研究成果建立在近年有关钙钛矿吸波材料的实验进展上。值得指出的是,仅仅五年之间,钙钛矿混合薄膜光伏电池的转换效率从低于5%飙升