一种全新的局域相位调制异质结构,它能够对 PSCs
产生上述效果。在该结构中,我们将大量新开发的有机半导体(CY 分子)掺入整个钙钛矿晶格以及其表面和晶界。这种局域相位调制异质结构 PSCs 实现了
掺入钙钛矿晶格、表面及晶界,而非仅作为表面 / 晶界添加剂,实现缺陷钝化、能级调制、晶格调整及晶相调控。3. 光伏性能表征小面积电池性能(n-i-p 结构:FTO/TiO₂/FAPbI
了一种纳米晶-核模板 (NCNT) 策略,通过精确匹配纳米晶体的 I/Br 比与目标钙钛矿薄膜的 I/Br 比,直接解决异质成核——相分离的根本原因。这种方法指导 Pb-I/Br 八面体的均质组装
处理后重新取向的示意图。图 3. a) 器件结构示意图:对照组薄膜、含 Al₂O₃纳米颗粒的空穴传输层(ST-Al₂O₃),以及结合 Al₂O₃纳米颗粒和 PEABr
的空穴传输层(ST-Al₂O
。e)
照片显示裸露 Me-4PACz 对钙钛矿的润湿性差,以及 PFN-Br/Al₂O₃修饰后润湿性的改善。f) 含或不含
Al₂O₃纳米颗粒的掩埋界面示意图。图 4. a) 涂覆在 ITO
传输层(HTL/ETL)的优化和钙钛矿添加剂的使用,这些添加剂能够填充晶界,改善界面接触,从而提高器件性能。核心优势:轻量化与灵活性柔性钙钛矿太阳能技术最显著的优势是其出色的功率重量比,这使其在建
:耐高温但易碎金属箔基底:耐高温但需要透明顶电极2. 透明导电电极(TCEs):ITO是最常用选择,但在柔性基底上沉积温度较低,导致结晶度和导电性下降替代材料如PEDOT、石墨烯、金属纳米线等正在探索中
2g,h)引发了该结构可扩展性的担忧。为解决这一问题,研究者提出了多种创新互连层方案以提高稳定性。其中SnO₂/纳米晶ITO/自组装单分子层(SAMs)结构兼具高透光性和优异导电性,其采用低温溶液法制
备的ITO纳米晶(NC-ITO)层能减少对底层子电池的损伤,并展现出550小时T95稳定性的优异表现(图2i)。另一种常用结构SnO₂/溅射TCO/PEDOT则通过溅射ITO或氧化铟锌等透明导电氧化物
专利技术“晶弦(高密度细栅互联技术)”及采用钙钛矿叠层技术的超高功率效率组件,同样吸引了众多参展观众驻足咨询。晶澳储能,全新组成在全球能源转型加速的背景下,储能对于具有间歇性特点的新能源发展至关重要
ÜV部门经理姚源博分别在现场做出主题报告。欧阳子以“从25%到30%+:光伏的技术突破与未来愿景”为题作出分享,为参展观众深入剖析了晶澳“晶弦”技术的路径优势,及钙钛矿叠层技术的发展趋势。姚源博全面
,其单位重量功率为 23W
g-1,PCE为12%。Kang 等人使用正交银纳米线 (AgNWs)
作为底部透明电极的材料,制造了一种 PCE 为 15.18%、单位重量功率为 29.4 W
g-1。在此,作者报道了一种高柔性且高效的超薄钙钛矿太阳能电池,该电池通过同时对钙钛矿薄膜、透明电极和基底进行整体优化而实现。首先,在钙钛矿薄膜的晶界处引入二维钙钛矿(PEA₂PbI₄)作为润滑剂
界面的卤素离子会导致严重的相分离和器件稳定性差,而非水平层内扩散。单层CsPbX3纳米晶薄膜可有效抑制层间离子迁移引起的场相关相分离,显著提高电致发光稳定性,包括光谱和寿命。优化结构在基于混合卤化物
CsPb(Ix/Br1-x)3的纯红色PeLED中,实现了26.9%的高外量子效率,并在初始亮度为100
cd m−2时将工作半衰期显著延长至61.2小时,比采用多层纳米晶的对照器件长300多倍。创新
理工大学等团队,在《自然·能源》杂志发表重磅成果:通过优化纳米晶硅空穴接触层的电学性能,成功将硅异质结(SHJ)太阳能电池的转换效率提升至26.81%,并实现86.59%的填充因子(FF),创下单结硅
、隆基的破局之道:纳米晶硅+透明导电层研究团队用p型纳米晶硅(p-nc-Si:H)替代传统非晶硅,并优化透明导电氧化物(TCO)层,实现三大突破:1. 导电性飙升4个数量级纳米晶硅结构:通过等离子体化学
高效N型太阳电池技术的标准统一和协同创新。协会长期致力于推动半导体、光伏、纳米科技等领域的标准化发展,其光伏标准技术委员会自2010年在中国设立以来,已主导制定多项具有全球影响力的国际标准,为中国光伏
科学家王文静以《异质结太阳电池的核心技术问题》为题,系统阐述了异质结技术在效率、成本与产业链协同方面的最新突破。他指出,通过在双面微晶异质结结构基础上的工艺优化,如网板升级、银铜浆料替代、无主栅