据报道,美国科学家设计了一种微导线太阳能电池,可以实现单线态裂变与硅的耦合。他们取得成就的关键是一个界面,该界面将电子和空穴依次转移到硅中,而不是同时将两者转移到硅中。太阳能电池示意图图片
: 麻省理工学院, Joule麻省理工学院(MIT)的科学家们利用一种被称为单重态激子裂变(SF)的效应,展示了一种新型硅太阳能电池概念,该概念有可能超过传统光伏器件的量子效率极限。单重态激子裂变是在某些材料
蔚山国立科学技术研究所(UNIST)、蔚山大学和群山国立大学的研究人员开发了一种多功能空穴选择性层(mHSL),旨在显着提高钙钛矿/有机叠层太阳能电池(POTSCs)的性能。据报道,这种薄膜材料能够
,该器件在长时间暴露在65°C的高温和连续光照500小时,仍能保持其80%以上的初始效率,表现出优异的长期稳定性。新开发的HTL经过精心设计,使其能级与钙钛矿活性层保持一致,选择性地提取空穴,同时阻断
,都令钙钛矿/硅串联太阳能电池的效率提升受到严重限制。理大应用物理学系助理教授殷骏教授带领的研究团队结合先进材料设计和器件优化策略,研制出高效钙钛矿/硅串联太阳能电池,为界面工程带来重大突破。此项研究与
(EDAI)分子沉积,同时实现场钝化和化学钝化,达至双层交织钝化,有助维持高效的电子提取,并抑制非辐射复合现象。团队再将应用了此策略的钙钛矿材料,与具有前表面纹理平缓、后表面高度纹理化的独特设计的双纹理
洛桑联邦理工学院(EPFL)、西瑞士应用科学与艺术大学(University of Applied Sciences and Arts of
Western Switzerland)和米兰
理工大学(Politecnico di Milano)的研究人员使用一种将简单的化学添加剂TEMPO与快速红外固化工艺相结合的新方法设计了一种高效且稳定的钙钛矿太阳能电池。该方法通过使用2,2,6,6-四
有序用电企业错避峰方案(《龙港市2025年迎峰度夏企业错避峰安排计划汇总表》,见附件1)。科学合理地落实好"四定”错避峰负荷,
按照用户电力负荷特性,帮助、指导用户设计个性化错避峰方案,填报《龙港
5月21日,浙江省龙港市经济发展局发布关于印发《2025年龙港市迎峰度夏有序用电工作方案》的通知。文件提出,全市有序用电按A-F级分级启动实施,根据实际情况,结合企业分类综合评价机制,科学编制
,年减排二氧化碳超5500吨,为园区低碳转型注入新动能。友巨新能源彩钢瓦屋顶光伏支架系统采用高强度、耐腐蚀的铝型材,通过轻量化设计降低屋面荷载压力,同时具备抗台风、抵御暴雨侵袭的极端天气防护能力。支架
通过定制化彩钢瓦夹具与屋面紧密贴合,无需穿透屋面防水层,安装设计简单便捷。此外,支架系统融入“隔热增效”的设计理念,通过优化光伏组件与屋面的间距,形成自然通风层,有效降低室内温度,减少空调能耗,实现发电
界面修饰材料,直接决定着空穴传输层的能级匹配与器件稳定性。传统材料研发面临"大海捞针"困境:科学家需要从比地球沙粒总数还多的分子组合中筛选理想材料,往往耗时数年。这种现象在材料学界被称为"试错困境
"。现象光伏研发的智能材料开发系统——PhenoALBO(Active
Learning + Bayesian Optimization)
,就像给科学家配备了一台"分子放大镜"——通过机器学习预测
广泛应用和可持续发展。科学贡献:该研究为理解和设计高效率、高稳定性的叠层太阳能电池提供了新的视角,对于叠层太阳能电池领域的科学进步具有重要贡献。图文信息图1. 从侧面观察(a)Me-4PACz和(b
稳定性。此外,SAM聚集会导致界面损失和开路电压(VOC)损失。为了解决这一问题,中国科学院宁波材料技术与工程研究所葛子义研究员和刘畅研究员等人在前期钙钛矿太阳能电池研究的基础上,开发了一种创新策略,可以
S-Ni轨道相互作用增强界面键,产生比PA-SAM更高的结合能。这种设计促进了均匀的SAM形成。借助这一策略,该团队制造的WBG电池,其PCE提高至20.1%。当与窄带隙(NBG)子电池集成时,双端
钙钛矿发光二极管(PeLED)的发展面临关键瓶颈:卤素空位缺陷显著制约器件性能,而传统钝化策略在抑制缺陷的同时易引发结构失稳并导致体系复杂化。鉴于此,中国科学院半导体研究所张兴旺&游经碧在
/10.1002/adma.202503699创新点:1.挥发性碘添加剂的双功能设计首次将挥发性碘(I₂)同时作为“缺陷钝化剂”和“动态结晶调节剂”,在富碘环境中通过I⁻离子精准修复碘空位缺陷,并借助其挥发性