在应对气候变化的全球行动中,太阳能技术正经历着革命性突破。被誉为"光伏新星"的钙钛矿材料,因其独特的光电特性备受关注——它不仅具备突破传统硅基太阳能极限的理论转化效率,生产能耗更是只有传统材料的十分之一。这种薄膜材料可制成半透明或柔性组件,正在开启建筑光伏一体化、可穿戴设备供电等全新应用场景。

在这场钙钛矿光伏技术革命的核心战场,新材料开发正成为决胜关键。其中,自组装单分子层(SAMs)作为关键界面修饰材料,直接决定着空穴传输层的能级匹配与器件稳定性。传统材料研发面临"大海捞针"困境:科学家需要从比地球沙粒总数还多的分子组合中筛选理想材料,往往耗时数年。这种现象在材料学界被称为"试错困境"。现象光伏研发的智能材料开发系统——PhenoALBO(Active Learning + Bayesian Optimization) ,就像给科学家配备了一台"分子放大镜"——通过机器学习预测、量子化学计算模拟和机器人实验的"铁三角"协作,将材料研发效率提升至全新维度。
PhenoALBO构建起了SAMs分子研发的完整闭环,其核心架构包括了四大模块:智能分子设计引擎、高通量计算模拟、高通量分子合成、智能优化和筛选系统。实现从“人工试错”到“AI驱动”的范式转换。

智能分子设计引擎包括但不限于以下新SAMs分子生成路径:1.结合现象光伏丰富的SAMs分子实验室研发经验和SAMs分子的结构特征有针对性地设计新分子。2.挖掘文献数据和已有的有机分子数据库进行智能筛选。 3.集成基于迁移学习的生成式AI模型生成符合SAMs分子特征的新分子材料。通过算法筛选后,执行高通量DFT计算(获取HOMO/LUMO等量子化学特征)、分子描述符计算(分子量、各类原子数等)和分子动力学模拟薄膜自组装行为。筛选出的候选分子经高通量合成制备后,通过光电转化效率、开路电压等实验指标验证性能。结合上述数据基于主动学习AI模型和贝叶斯优化算法对材料的采样和筛选持续进行多目标优化,最终获得具有优异光电特性的SAMs功能分子。该集成分子生成-理论预测-实验验证闭环系统显著拓展了分子设计空间和提升了研发效率。
这项技术突破的意义不仅在于材料科学本身。当光伏组件的成本和效率瓶颈被打破,建筑外墙变身发电站、电动汽车实现太阳能自供电等场景都将加速到来。据国际能源署预测,到2030年,钙钛矿技术驱动的光伏市场将形成万亿级产业生态,而AI赋能的材料研发,正在为这场绿色能源革命按下快进键。现象光伏期待与各位携手共同推动光伏行业万亿级产业生态建设!
索比光伏网 https://news.solarbe.com/202505/27/389635.html

