方位角。计算屋顶光伏阵列间距的时候,调整日照间距阴影系数即可。
3、案例分析
本文的案例,是山东省淄博市的某个工商业屋顶分布式项目,其中有一座建筑是连续起伏的南北坡屋面,建筑由连续六跨结构组成
汇流后,输出至1000kVA的箱式变压器,升压至10kV并网。该屋顶供安装265Wp多晶硅光伏组件2772块,容量734.58kWp。该屋顶上的光伏方阵与相邻的另一栋建筑屋面上的光伏方阵共同接入一台箱变
输入电压。 图4 晶硅组件的温度特性 2、组件和组串的内部串联结构 经常听到晶硅组件60片、72片的说法,这个实际讲的是组件内部电池片串联的个数,每个电池片是一个独立的光伏电池单元。如图5
晶体硅太阳能电池制造工艺中,使用成本昂贵的蒸镀工艺制作电极,如采用Ti/Pa/Ag结构来降低接触电阻,增加与硅底的附着力。而在实际工业生产中,为降低生产成本,常采用导电性能优越的银浆料,用丝网印刷的
、发展质量高,符合国家能源局对光伏的要求,国家会大力支持。 1)双面组件:双面组件使用的电池技术主要有基于p型硅片的PERC技术,基于n型硅片的PERT技术和异质结结构的HIT技术。除了正面接收太阳辐射
电子通过正极集流体,经外部电路向负极运动;锂离子在电解液中从正极向负极运动,穿过隔膜到达负极;经过负极表面的SEI膜嵌入到负极石墨层状结构中,并与电子结合。
在整个离子和电子的运行过程中,对电荷转移
产生影响的电池结构,无论电化学的还是物理的,都将对快速充电性能产生影响。
快充对电池各部分的要求
对于电池来说,如果要提升功率性能,需要在电池整体的各个环节中都下功夫,主要包括正极、负极、电解液
接触电阻的增大,影响电池的串联。选择性发射极太阳电池的结构设计可以很好地解决这一矛盾。选择性发射极(selectiveemitter,SE)太阳电池,即在金属栅线与硅片接触部位及其附近进行高浓度掺杂
电压、短路电流、峰值功率。当温度升高时,光伏组件的输出功率会下降。市场主流晶硅光伏组件的峰值温度系数大概在-0.38~0.44%/℃之间,即温度升高,光伏组件的发电量降低,理论上是温度每升高一度,发电量
约降低0.38%。
【模拟数据仅供参考:5-85℃下,同一块晶硅太阳能电池的的电流、电压、功率输出曲线】
值得关注的是,随着温度的升高,短路电流几乎不变,而开路电压则降低,说明环境温度会
IEC61215 标准的基础上展开深入的测试研究。
1
试验设计
收集同一个厂家同一批次生产的4 块组件( 该类型组件由60 片多晶硅太阳电池片组成),并将其编号。1# 和2# 组件用于DH2500
;最后将1# 和3# 组件拆解分析。
2
试验过程与结果
2.1湿热湿冻连续老化试验组件功率衰减
图4 分别为1# 和2# 组件( 均为DH2500) 功率衰减、串联电阻及填充因子FF 的变化
0 引言
为了进一步优化其生产工艺、提高晶体硅电池片效率、降低生产成本,此前已有诸多研究,20世纪80年代,澳大利亚新南威尔士大学光伏实验室提出了PERC结构太阳电池,打破了当时晶体硅太阳电池
转换为四面体结构,产生间隙态氧原子,间隙态氧原子夺取p型硅中的价态电子,形成固定负电荷,使Al2O3薄膜显出负电性,在Al2O3/Si界面产生一个指向硅片内部的界面电场,使载流子可迅速逃离界面,降低界面
降。市场主流晶硅光伏组件的峰值温度系数大概在-0.38~0.44%/℃之间,即温度升高,光伏组件的发电量降低,意思是:理论上是温度每升高一度,发电量降低0.38%左右。而薄膜太阳能电池温度系数会好很多
,如铜铟镓硒(CIGS)的温度系数仅为-0.1~0.3%,碲化镉(CdTe)温度系数约为-0.25%,均优于晶硅电池。
上图是模拟5-85℃下,同一块晶硅太阳能电池的的电流、电压、功率输出