有机光电

有机光电,索比光伏网为您提供有机光电相关内容,让您快速了解有机光电最新资讯信息。关于有机光电更多相关信息,可关注索比光伏网。

新加坡国立大学侯毅Nature:27.5%!新受体+新SAMs助力钙钛矿/有机叠层创造新纪录!来源:钙钛矿人 发布时间:2025-06-30 15:58:58

是因为窄带隙有机亚电池中的近红外光电流不足。基于此,新加披国立大学侯毅等人设计并合成了一种不对称非富勒烯受体(NFA),P2EH-1V,P2 EH-1V具有单边共轭π桥,在保持理想激子解离和纳米形貌的
文章介绍钙钛矿和有机半导体的宽带隙可调谐性使得钙钛矿-有机叠层太阳能电池的开发具有有希望的理论效率。然而,报道的钙钛矿-有机叠层太阳能电池的认证效率仍然低于单结钙钛矿太阳能电池的认证效率,主要

稳态效率27.32%!海南大学钙钛矿太阳能电池刷新纪录!来源:中国科学报 发布时间:2025-06-26 14:23:56

“27.32%!这一目标我们终于实现了!”日前,海南大学物理与光电工程学院的实验室内响起了欢呼声。该校新能源光电材料与器件团队自主研发的钙钛矿太阳能电池,经中国国家光伏产业计量测试中心认证,稳态
光电转换效率达27.32%,这一数值超越了美国国家可再生能源实验室今年2月公布的26.95%效率纪录,以及马丁·格林太阳能电池效率统计表5月收录的27.3%行业标杆值,标志着海南大学在第三代光伏技术

南京大学最新Nature Energy!钙钛矿技术的终极体现来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-06-24 13:48:05

(TCO)薄膜实现高透光导电。在钙钛矿-有机叠层电池中,夹在BCP/SnOₓ与MoOₓ之间的溅射氧化铟锌层通过最小化光学与电学损耗,实现了24%的纪录效率。但溅射工艺(尤其是高温或高能粒子条件)可能
添加氨基酸盐,研究人员成功提高了薄膜质量和光电性能,创造了三结器件28.7%和四结器件27.9%的效率新纪录。尽管如此,要实现37%的实用效率潜力(对应1.2、1.5和2.0eV的理想带隙)仍存在显著

苏州大学崔超华 Angew:20.17%!如何精细调控PDINN制备高效有机太阳能电池?来源:钙钛矿人 发布时间:2025-06-24 10:48:35

,科研团队改善了阴极界面层的性能。效率突破:采用这种混合阴极界面层的有机太阳能电池实现了超过20%的光电转换效率。稳定性增强:优化后的电池在长期运行中展现出更好的稳定性。研究内容:该研究专注于通过阴极
界面层工程来提高有机太阳能电池的性能。科研团队通过精确控制阴极界面层的组成和结构,实现了对电荷提取和传输过程的优化,从而提高了电池的光电转换效率和稳定性。研究意义:性能提升:这项工作提供了一种通过阴极

人民网:新技术提高钙钛矿太阳能电池稳定性来源:人民网 科技日报 发布时间:2025-06-18 16:02:36

利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,因其具有较高的光电转换效率和较好的稳定性,在光伏领域受到广泛关注。目前,这种新型太阳能电池已实现高达27%的认证光电转换效率,可与单晶硅电池

创维光伏亮相SNEC 2025,全场景解决方案开启全民光伏新时代来源:创维光伏 发布时间:2025-06-11 19:40:04

,降低光伏发电成本,提升产业链整体竞争力。优势互补:创维光伏携手阳光电源共赢未来同期,创维光伏还与阳光电源签署了双方合作协议,2025年计划在分布式户用、工商业市场完成光伏逆变器采购合作,通过优势互补
目标贡献力量。此次创维光伏展台将产品与场景融入AR交互系统和互动H5游戏,参与者均有机会获得精美礼品。欢迎各位光临创维光伏展台(6.2H 馆-E610 展台),参与打卡互动,共同探索光伏科技的无限可能!

世界首例!寒门学子三天2篇Nature,钙钛矿强势登顶,新方向!新突破!来源:钙钛矿人 发布时间:2025-06-10 10:17:17

优化,通过LAMMPS多GPU并行完成晶圆级模拟,创新性融合预训练迁移策略,在石墨烯外延生长等场景实现精度效率双优。针对有机体系,运用MACE-OFF23势函数精准预测结构演化规律。第五天:机器学习
NEP力场的简要介绍4. 使用pyNEP软件和Calorine快速、自动化生成任意有机分子的力场参数文件(同时也适用GROMACS)ii. LAMMPS的入门与使用1. 软件发展趋势与特点2. 大规模并行

Moungi G. Bawendi诺奖团队最新钙钛矿太阳能电池综述:从ABX₃材料到电池商业化来源:太阳能电池札记 发布时间:2025-06-09 14:31:23

的基本构造PSCs的核心是一种具有ABX₃结构的金属卤化物钙钛矿材料,其中A位通常是有机或无机阳离子(如甲胺MA⁺、甲脒FA⁺或铯Cs⁺),B位是金属阳离子(如铅Pb²⁺或锡Sn²⁺),X位是卤素
碘MAPbI₃、甲脒铅碘FAPbI₃),负责吸收阳光,产生电子-空穴对光活性层的制备工艺1. 溶液法工艺一步旋涂法:快速简便但受操作者技术影响大两步旋涂法:先沉积PbI₂层,再与有机盐反应,重现性

麻省理工Joule实验首次硅太阳能电池量子效率突破极限138%来源:太阳能电池札记 发布时间:2025-06-09 11:50:50

(FF)几乎不变,导致整体光电转换效率(PCE)提升。  排除其他因素:对照实验(p⁺-n型电池)在沉积Tc/ZnPc后,EQE因有机层吸收而下降,证明增益非抗反射效应所致  将AlOₓ层增厚至10 nm
散失。  近日关于光子倍增方向,麻省理工学院(MIT)领衔的国际团队在激子裂变增强硅太阳能电池领域取得重大突破。他们创新性地利用有机分子材料,成功将硅电池的峰值电荷生成效率提升至(138±6)%,实现

南昌大学陈义旺 AM :19.58%!分子互锁界面助力可拉伸有机光伏效率创新高!来源:钙钛矿人 发布时间:2025-06-05 09:08:13

界面工程策略:通过在电子传输层中嵌入三维互穿导电弹性体网络,实现了动态应力耗散。高效能量转换:研究实现了19.58%的光电转换效率(PCE),这是目前柔性有机太阳能电池(f-OSCs)中最高的效率之一
文章介绍可拉伸有机太阳能电池(s-OSCs)的发展需要在机械顺应性和电学性能方面实现同步突破,其挑战根源在于有机半导体与金属电极之间固有的机械不匹配。基于此,南昌大学陈义旺等人提出了一种双相界面工程