倍,二者不可同日而语,这也是有的国家强制要求有备用主变的原因之一,但上述公式并未反应这一点。另外,方阵中的某个或某些组件可能存在未导致系统停机、但影响发电量的隐性故障,需要详查并单独核定。为准确反应
效率,时效性较差,特别对固定倾角或跟踪形式的支架。按照IEC61724,采用性能指数(PR) 核定电站的发电能力,时效性较强,但考虑因素不全,特别是没有将支架形式和组件安装角度这一关键的设计要素考虑
停机1小时所造成的发电量损失会是某台汇流箱停机1小时的几千倍,二者不可同日而语,这也是有的国家强制要求有备用主变的原因之一,但上述公式并未反应这一点。另外,方阵中的某个或某些组件可能存在未导致系统停机
,考虑因素较全,特别对不同的支架形式和多角度设计;缺点是,由于该指标基于水平辐射量核定电站的效率,时效性较差,特别对固定倾角或跟踪形式的支架。按照IEC61724,采用性能指数(PR) 核定电站的
常规设计,复杂山地中的组件布置一般是以正南坡为主,但东西坡就真的不堪大用吗?
上表是自云南投产一年多的山地光伏电站采集而来的数据,20号方阵是正南坡,42号是偏南坡,11号是西坡。对三个方阵的数据进行
一年的采集后,取平均值进行比较,按照运营小时数正南坡运营时间是最长的,但发电量却并不是最大的,反而是最小的。而西坡这边发电量才是一年之中最大的。
最佳倾角最大收益
支架倾角的选择是
合理化建议征集中,项目部员工都会提出许多建设性建议,如根据季节变化,对斜单轴电池板进行倾角微调,对电池板与U型梁之间加装塑料卡扣、对电缆铺设增加预留等等,努力将电站缺陷率降至最低。2015年全年,河南光伏
,有时一连一个多星期都在下雨,这样防汛情况就显得格外重要,只要一下大雨,项目经理就要组织大家对面积近1410亩的站区方阵进行加密巡回检查,大家在满是斜坡的站区内巡视,道路泥泞难走,但确保电站防汛度汛一刻
发电量损失。客观上,组件的分散性、方阵的遮挡、支架的倾角变化等多种因素都会导致失配损失。集散式逆变器方案中每个智能MPPT控制器中有4个或8个MPPT控制模块,每个MPPT控制模块接入4路或2路组串,与
、安全保护等光伏电站核心功能的实现任务。在光伏发电系统中,逆变器MPPT方案决定了光伏方阵是否可以发挥出最大的效能,逆变器的转换效率的高低也是决定光伏电站发电量高低的关键因素,逆变器并网控制算法的优劣
叫雷击密度。雷击密度又有什么用呢?
1平方公里折算后约为1500亩,江浙地区按照30度倾角使用1640*992的组件,大约能建设65兆瓦左右的光伏电站(22亩/兆瓦)。组件的投影面积约占实际利用面积的
流经入户线路侵入损坏室内的光伏发电设备,对光伏发电系统的线缆应加装多级防浪涌保护装置进行防雷保护。
首先,应该在太阳能电池方阵的直流输入线路安装直流避雷器,根据线路长度和工作电压选用标称放电电流
分散、分区复杂,难以实现设计和设备选型的标准化所以山地光伏电站地形复杂、高差变化大,合理的选取阵列布置区域、设置阵列间距、倾角、方位角,均是设计的重点和难点。2、山地地形三维模拟及日照阴影分析通过
分析平面日照等时图,可以剔除山体因地形造成的自身遮挡区域,筛选出布置光伏方阵的可用区域。3、山地光伏电站逆变器的选择逆变器的选择,应该详细地根据地区的地形,地势和气侯特点,因地制宜选择逆电器。(1)集中
:光伏阵列分散、分区复杂,难以实现设计和设备选型的标准化所以山地光伏电站地形复杂、高差变化大,合理的选取阵列布置区域、设置阵列间距、倾角、方位角,均是设计的重点和难点。2、山地地形三维模拟及日照阴影分析
通过分析平面日照等时图,可以剔除山体因地形造成的自身遮挡区域,筛选出布置光伏方阵的可用区域。 3、山地光伏电站逆变器的选择逆变器的选择,应该详细地根据地区的地形,地势和气侯特点,因地制宜选择逆电器
,集散式逆变器的主要特征是集中逆变和分散MPPT跟踪,给客户带来的价值主要体现在三个方面:首先,分散MPPT减小了光伏组件各种失配带来的发电量损失。客观上,组件的分散性、方阵的遮挡、支架的倾角变化等多种
任务。在光伏发电系统中,逆变器MPPT方案决定了光伏方阵是否可以发挥出最大的效能,逆变器的转换效率的高低也是决定光伏电站发电量高低的关键因素,逆变器并网控制算法的优劣决定了并网点电能质量的高低,逆变器
要。
特点二:山地地形本身或阵列之间的局部遮挡
特点三:光伏阵列分散、分区复杂,难以实现设计和设备选型的标准化
所以山地光伏电站地形复杂、高差变化大,合理的选取阵列布置区域、设置阵列间距、倾角
、方位角,均是设计的重点和难点。
2山地地形三维模拟及日照阴影分析
通过分析平面日照等时图,可以剔除山体因地形造成的自身遮挡区域,筛选出布置光伏方阵的可用区域。
1