,使其不一致损失增加;电缆接线鼻之间压接工序相反,导致接触面发热严重;分布式系统的防雷一般接入建筑物接地网络,而一些建筑物的接地电阻不合格,防雷效果令人堪忧;组件的安装压块不紧固,易形成共振,倾覆组件等
程度,也与上述衰减现象的发生有关。到目前为止,形成机理还不是太明确,推测来自于钠钙玻璃的金属离子是形成上述具有PID效应的漏电流的主要载流介质。
内部可能原因:
1:系统方面:逆变器接地方式和组件在
一块组件和逆变器正极输出端中间的所有组件处于正偏压下,PID现象不明显。
2:组件方面:环境条件,如湿度等的影响导致了漏电流的产生。
3:电池方面:电池片由于参杂不均匀导致方块电阻不均匀;优化
原因达成定论,主要在于其诱发因素的多元性及复杂性。因此组件厂商在应对PID效应时,公认的研究方向:(1)采用非Na、Ca玻璃提高玻璃的体电阻,阻断漏电流通路的形成;(2)采用非乙烯醋酸乙烯共聚物的封装
现象基本消失。逆变器厂商一般会利用隔离变压器负极接地或者虚拟负极接地的方法,消除光伏组件对地负偏压。这种方案较为明显的缺点就是,当系统使用无变压器逆变器外加隔离变压器方案会造成几大潜在危险:(1)PV
回填或换填、土石方装卸运输、余土处理等全部土石方工程及接地网敷设与接地电阻试验);与箱变安装配套的管线预留、预埋;支架基础标识设施安装等为完成支架基础工程在施工阶段应包括的工程实体、措施项目、技术服务
平整和恢复等;支架基础预埋件的制作、安装、支架基础混凝土浇筑、支架基础开挖回填或换填、支架基础防腐等;沉降观测点的设置和沉降观测工作;支架基础预埋螺栓的现场第三方拉拔试验;支架基础接地工程(含土石方开挖及
决定电站投资收益的关键因素,也是光伏产业技术要进一步升级的必要前提。
组件效率的衰减主要分为电势诱发衰减(PID)和光致衰减(LID)。电势诱发衰减是因为存在于光伏组件的电路与其接地金属边框之间
的高电势差,会造成组件的光伏性能不断的衰减。而电池片的光致衰减是导致组件效率衰减的更为重要的因素。总体来说,我们可以通过调整硅片的电阻率和掺杂均匀度,有效降低电池片的光致衰减,相对提高组件的转换效率
功率,可以从电池,组件,系统三个方面的光学性能及电学性能考量。这里我列举了几个方向。例如,在组件端,光学优化的方案有聚光焊带的开发,电学优化有低电阻焊接技术工艺的开发等。系统的温度系数,工作温度等都是影响实际
,高温高湿下更好地保护电池片;组件不接地,对抗PID性能更加优异等优点。而耐热冲击的组件,我们认为采用导电膜材料,能改善性能。以前由于导电膜成本高没法推广。刚才我们上午听专家报告了,导电膜的国产化已经有
方面的光学性能及电学性能考量。这里我列举了几个方向。例如,在组件端,光学优化的方案有聚光焊带的开发,电学优化有低电阻焊接技术工艺的开发等。系统的温度系数,工作温度等都是影响实际发电量的要素。下面我会
863项目立项,由英利和天合共同承担研究。对于耐湿热的高可靠性组件产品,我们提出了双玻组件的解决方案。因为无机材料玻璃的耐候性远优于高分子背板;玻璃不透水,高温高湿下更好地保护电池片;组件不接地,对抗
,系统三个方面的光学性能及电学性能考量。这里我列举了几个方向。例如,在组件端,光学优化的方案有聚光焊带的开发,电学优化有低电阻焊接技术工艺的开发等。系统的温度系数,工作温度等都是影响实际发电量的要素
作为国家863项目立项,由英利和天合共同承担研究。对于耐湿热的高可靠性组件产品,我们提出了双玻组件的解决方案。因为无机材料玻璃的耐候性远优于高分子背板;玻璃不透水,高温高湿下更好地保护电池片;组件不接地
一些概念性的东西,都有提升组件效率的一个方法,组件电阻焊接,光学就是我们讲的LC2,这里面都有一个关注,而且很接近量产,那系统端都是熟悉的。另外还有一些电子的温度等等。电池这端实际上就绝对是未来的方向
一种是玻璃,没有但是这时候根本实现不了,成本上接受不了,刚才我们就说,材料厂商高阻的有利于甚至于高密度的也可以减少有几个方面,一个刚才接地的方法,或者是说在晚间容易表面电荷的给加一个正电电压。我们看
完后,组件与组件之间进行串联,如果组串需要跨接线缆,采用架空方式敷设时需要PVC管或钢管进行保护,组件和支架的接地和原屋面的避雷带连接,如果接地电阻值不够,还需要加接地圆钢或扁钢。组串到逆变器直流侧的