论文概览自组装分子沉积在氧化镍表面,是反式钙钛矿太阳能电池实现高效空穴传输的关键。该工作为设计高覆盖、高稳定NiOx基HTL提供了全新思路,将反式钙钛矿电池推向更高性能与更长寿命。TCEP通过致密化SAM、降低缺陷、优化能级排布,实现高效空穴抽取与复合抑制,从而全面提升光伏性能。DFT证实该集成层吸附能更高,可抵御DMF侵蚀并阻断NiOx对钙钛矿有机阳离子的还原,抑制界面非辐射复合并优化能级匹配。
在镍氧化物上沉积自组装单分子层是实现高性能倒置钙钛矿太阳能电池的关键。然而,钙钛矿前驱体导致的SAMs溶解和再沉积会形成单分子层泄漏,引发钙钛矿降解并降低器件稳定性。本研究西北工业大学李炫华等人提出了一种新方法,通过插入还原剂三膦盐酸盐实现NiO与SAMs的强耦合,构建集成化的NiO-SAMs空穴传输层。文章亮点强耦合界面设计:TCEP通过还原Ni并形成配位键和氢键,将NiO与SAMs紧密结合,吸附能提升至-7.97eV,显著增强界面稳定性。
低n值准二维钙钛矿具有优异的稳定性,但其电荷传输效率较低。文章亮点:高效与稳定兼得:通过酪氨酸调控低n值相(n≤3),同时提升准二维钙钛矿的稳定性和效率。载流子传输突破:Tyr增强层间电荷耦合,载流子扩散长度超1μm,电子迁移率提升4倍,器件滞后效应显著降低。大规模应用潜力:72.47cm组件实现20.28%认证效率,为目前大面积准二维钙钛矿器件的最高纪录,展示了商业化前景。
在“双碳” 目标引领下,沙戈荒地区凭借丰富的太阳能资源,成为我国新能源开发的重要阵地。然而,复杂的地理环境与严苛的气候条件,给沙戈荒光储项目的建设与运营带来诸多挑战。如何确保电力系统在极端环境下稳定运行,实现高效的能源传输与存储,成为行业亟待解决的关键问题。
南京工业大学(NanjingTech)和华南理工大学(South China University of Technology)的研究人员展示了一种逐层(Layer-By-Layer,LBL)热蒸发策略,以制备具有可调发射波长的高质量钙钛矿发光薄膜。
紫外光电子谱证实其使钙钛矿功函数降低0.48eV,形成更优电子抽取界面,彻底消除PbI的0.7eV界面势垒。载流子动力学全面优化:原位PL监测显示2-IM将钙钛矿结晶速率降低87%,缺陷形成率下降60%。结论展望本研究利用2-IM将光热不稳定的PbI残留物原位转化为六方层状金属有机复合物2-IMPbI。
近日,晶科能源委托国家光伏质检中心进行N型组件弱光性能的实证测试,项目位于宁夏银川,项目起始时间为6月1日至6月30日,监测周期为1个月。重要结论:1、弱光时段发电优势显著:在清晨和傍晚弱光时段,N型TOPCon组件相比N型BC组件的单日发电增益,阴天可达3.89%,晴天为2.33%。
最近研究院光电材料课题组研究发现,与FAPbBr3和FAPbCl3相比,FAPbI3有高介电常数、大的激子波尔半径,其极化可增强可见光吸收,降低载流子有效质量各向异性,显著降低激子结合能,极化诱导的介电屏蔽和晶格畸变协同减弱了电子-空穴库仑相互作用,促进电荷的有效分离。这些发现强调了极化工程是优化卤化物钙钛矿电荷传输和光吸收的关键策略。除此之外,极性相FAPbX3的光谱极限最大效率(SLME)比非极性相提高了36%,这归因于极化介导的载流子输运增强。该研究结果证明极化-结构畸变协同作用是驱动FAPbX3钙钛矿光伏电池效率提高的关键机制。
在钙钛矿吸收层中嵌入无机量子点是同时提高钙钛矿太阳能电池效率和稳定性的有效策略。本研究日本产业技术综合研究所CalumMcDonald和VladimirSvrcek等人利用飞秒激光表面工程技术将硅量子点处理为高度分散、稳定的超小颗粒,并将其嵌入甲脒铅碘钙钛矿薄膜中。此外,SE-SiQDs还调控了费米能级,使器件填充因子超过80%,能量转换效率突破20%,同时显著提升了长期工作稳定性。
与系统造价成本,已成为当前电力央企在新能源投资测算时的核心关注方向。跟踪、柔性占比飞速提升作为光伏电站的“骨骼”,光伏支架的性能直接影响光伏电站的发电效率及投资收益,是所有地面光伏电站的主要设备之一