(左图)研究采用的筛选流程,(中图)Cs2BX6型钙钛矿材料结构及容忍因子计算的A位元素稳定性关系图,(右图)可穿戴应用紫外线剂量计及安全辐射测量示意图。近年来,双钙钛矿材料因其出色的辐射灵敏度、可调带隙和环境稳定性,在可穿戴辐射检测方面显示出巨大的潜力。在这项工作中,使用机器学习方法初步筛选合适的双钙钛矿候选物,然后进行第一性原理计算,以进一步评估它们对可穿戴应用的机械适用性。
实现均匀且稳定的空穴传输层对于大面积钙钛矿太阳能电池至关重要。本研究提出了一种集成HTL策略,在NiOx合成过程中进行原位SAMs锚定,形成一种可扩展、高性能且耐用的HTL。参考消息来源NatureCommunications为应对这些挑战,科学家提出了一种基于原位SAMs协调NiOx纳米颗粒的创新型集成HTL策略。更重要的是,集成HTL中SAMs的强锚定效应进一步提高了器件的运行稳定性。
S-R样品通过降低体相与表面空位密度,将Sr扩散势垒从2.59eV提高至2.83eV,实现偏析动力学“冻结”。此外,压缩晶格使热膨胀系数降至13.3×10K,与YSZ电解质实现近零热失配,显著缓解热循环应力。电化学阻抗谱与Arrhenius分析表明,其ORR活化能降至1.35eV,氧表面交换与电荷转移过程显著加速,证实抑制Sr偏析对阴极活性和耐久性的双重增益。d)S-GLSCF和e)S-RLSCF在700°C、1.0Acm下的稳定性。c)S-GLSCF和S-RLSCF阴极整体ASR的比较。
结果显示,基于BC二代技术的Hi-MO9组件全生命周期发电优势明显,较TOPCon产品增益超3.5%。此前,来自全球权威机构EnertisApplus+、IPVF等知名技术服务机构,也对BC组件Hi-MO9与TOPCon产品的发电表现进行了深度分析,结果无不证实了BC产品在单瓦发电及LCOE方面的显著优势。隆基BC组件Hi-MO9作为新一代前沿光伏技术代表,正以卓越的发电性能和长久可靠性价值,加速驱动全球迈向更加绿色、低碳的新未来。
结果显示,基于BC二代技术的Hi-MO9组件全生命周期发电优势明显,较TOPCon产品增益超3.5%。首年发电量增益超2.3%全生命周期发电量增益超3.5%分析表明,隆基BC组件Hi-MO9首年等效满发小时数达2193小时,较标准尺寸与超大尺寸TOPCon组件分别高出2.30%与2.34%。隆基BC组件Hi-MO9作为新一代前沿光伏技术代表,正以卓越的发电性能和长久可靠性价值,加速驱动全球迈向更加绿色、低碳的新未来。
通过溶液法制备高性能钙钛矿太阳能电池有利于低成本的商业化生产,因此在溶液和固态阶段稳定钙钛矿至关重要。为解决这一问题,研究人员引入了4-苯肼来改性钙钛矿溶液,从而显著提高了其储存稳定性。随后,使用改性后的溶液制备PSCs时,无论钙钛矿溶液老化时间如何,都获得了显著提高且高度一致的光电转换效率,并且具有优异的运行稳定性,能够在1830小时内保持PCE≥92%。这项工作极大地有助于理解和改性钙钛矿在溶液和固态阶段的降解。
倒置结构钙钛矿量子点发光二极管因其与n型薄膜晶体管驱动的有源矩阵面板兼容,在下一代显示技术中具有重要前景。然而,ZnO电子传输层与钙钛矿量子点之间的界面反应会导致严重的降解和荧光猝灭,限制器件效率和运行稳定性。为此,南京理工大学徐勃和瑞典林雪平大学GlibV.Baryshnikov等人引入了一种双协同界面钝化策略,采用季戊四醇四作为多功能缓冲层。本工作确立了基于PETMP的钝化方法在高性能倒置Pe-QLED及其他光电器件中的变革潜力。
金属卤化物钙钛矿在场效应晶体管中展现出巨大潜力,但N型铅基钙钛矿FETs仍面临高缺陷密度、离子迁移和重复性差等关键挑战。本研究国防科技大学陈晨和湖南大学胡袁源等人提出一种简单而有效的超薄TiO插层策略,从根本上改变了铅基钙钛矿FETs的制备方式。综合表征表明,TiO插层可增强前驱体润湿性、促进更大更均匀的晶粒形成、降低缺陷密度,并有效抑制非辐射复合和离子迁移。
自组装分子作为空穴选择层在钙钛矿太阳能电池中取得了巨大成功。然而,有效调控杂化自组装分子在氧化铟锡衬底上的吸附构型仍具挑战,这直接影响其取向与均匀性。增强埋底界面质量与电荷传输:BSCA共组装诱导的垂直排列促进更致密、均匀的SAM覆盖,提升钙钛矿结晶质量,加快电荷提取并有效抑制非辐射复合。
相态均匀的自组装分子是推动p-i-n型钙钛矿太阳能电池规模化制备的关键路径。然而,在提升SAMs热稳定性的同时实现其相态均匀性仍是一大挑战。飞行时间二次离子质谱与X射线光电子能谱进一步揭示了Ph-BC2PA在热老化条件下优异的形貌稳定性。文章亮点二聚SAMs设计实现高均匀性与强锚定:通过苯基/噻吩基桥联构建二聚SAMs,有效抑制分子聚集,形成均匀致密的空穴传输层,并显著增强在ITO表面的锚定能。