更重要的是,由于钙钛矿体相的本征特性,这种电子积累效应延伸至整个钙钛矿吸收层,使其平均电子浓度提升约40倍,从而大幅增强了电子电导率,降低了传输损失。Figure4展示了最终器件的卓越性能和稳定性。
而引入DCl层后,PLQY和QFLS值大幅恢复,证明DCl有效抑制了C60诱导的复合损失。未经极化时,DCl处理的单结钙钛矿电池效率从19.0%提升至21.9%(图a),大面积器件效率达21.0%(图b)。在钙钛矿/硅叠层电池中,DCl处理使效率从28.4%提升至30.5%,经极化后进一步达到31.1%的认证效率。
越南4月15日颁发的第768/QD-TTg号决定批准了《2021-2030年国家电力发展规划》的调整,明确了该国电力的总容量和结构。c)电力发展规划必须基于科学依据,具有继承性、动态性和开放性。建设智能电网系统,有能力安全、高效地集成和运行大规模可再生能源。集中式太阳能项目必须配套安装储能电池,最小比例为装机容量的10%,持续时间2小时。同步发展LNG进口仓储和港口系统与规划中的电厂。陆上和近海项目空间布局在省级规划中确定。
除单结器件外,偶极钝化技术对全钙钛矿叠层太阳能电池也具有深远意义。通过解决窄带隙子电池中最棘手的损耗问题之一,该方法为钙钛矿叠层器件实现此前被认为难以企及的效率铺平了道路,预示着高效、可规模化的太阳能利用新时代的到来。
同时,偶极钝化有效减轻了叠层器件互连层引入的NBG子电池的接触损耗,在全钙钛矿串联太阳能电池中表现出创纪录的30.6%的PCE。这标志着多晶薄膜太阳能电池的效率首次超过30%。
基于拓宽光谱响应的第三代太阳电池的诞生,正是为了突破这一困境。然而太阳电池属于交互系统,这意味着太阳电池吸收阳光的同时,必然会向太阳方向发射热辐射,造成不可避免的能量损失。在第三代太阳电池的应用场景中,引入循环器技术,将其特性得到了充分发挥。
近日,科技巨头Meta宣布与ENGIENorthAmerica达成新合作,签署德克萨斯州太阳能额外购电协议。此次合作将双方原有交易的四个项目装机容量提升至1.3GW以上,其中新增的600MW产能来自ENGIE旗下全新太阳能项目,预计2027年投用后,将为Meta美国数据中心提供100%清洁能源支持。Meta全球能源主管UrviParekh对此次合作给予高度评价,她表示:“我们很高兴能为电网带来额外的600MW太阳能,并将我们与ENGIE的合作伙伴关系扩大到1.3GW。”
近年来,该邦与中央邦已逐渐崛起为印度太阳能电池及组件制造的新兴核心地带,产业集聚效应持续显现。除已获批项目外,太阳能产业布局热潮仍在奥里萨邦持续升温。SaatvikSolar、KshomaGreenEnergy等多家企业已将戈帕尔布尔纳入太阳能组件及电池工厂的规划选址范围,当地光伏产业链集群化发展态势日益清晰。业内分析认为,奥里萨邦凭借优越的区位条件、完善的基础设施及持续优化的营商环境,正成为印度太阳能制造业投资的热门目的地。
我们提出了一种“SAM-in-matrix”策略,将部分SAM分子分布在三氟苯基硼的稳定基质中,有效避免了分子堆积引起的聚集。此外,Me4PA@BCF薄膜的热稳定性优于Me4PA薄膜,经过150小时100℃的热老化后,Me4PA@BCF基器件保持了93.6%的初始PCE,而Me4PA基器件下降至72.3%。这表明,Me4PA@BCFHTL在大规模钙钛矿太阳能模块的高效、稳定生产中具有广阔的应用前景。
然而,项目推进成效未达预期——已完成建设的项目仅155469个,仍有96728个项目处于未完工状态,未完工比例高达38.3%,这意味着韩国已获批太阳能项目的总体完成率仅为61.7%。从区域分布来看,韩国部分地区的太阳能项目未完工问题更为突出,其中全罗北道、全罗南道和忠清南道的未完工率尤其高。此次公布的数据暴露出韩国太阳能项目推进过程中存在的明显短板。