可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。
该论文通过在钙钛矿太阳能电池(PSCs)中嵌入由2 - 羟丙基-β- 环糊精(HPβCD)和1,2,3,4 - 丁烷四羧酸(BTCA)组成的自交联超分子复合物,同时解决了铅泄漏、铅毒性及器件稳定性问题;改性后PSCs 冠军功率转换效率(PCE)达22.14%,严重破损器件经522 小时动态水冲刷仍保持97% 初始效率且铅泄漏量< 14 ppb(符合美国EPA 标准),铅毒性降至与无铅PSCs 相当水平,还实现了铅的闭环回收,为PSCs 商业化提供可持续路径。
钙钛矿材料中高度能量无序导致严重的载流子非辐射复合,直接影响光伏器件的能量损失。目前,对钙钛矿太阳能电池中能量无序的调控及其与开路电压损失之间的关联尚不明确。本研究华侨大学吴季怀、北京大学朱瑞和西北工业大学涂用广等人通过原位NH生成调控钙钛矿结晶过程,提升了其能量有序度。最终,我们获得了乌尔巴赫能量低至23.7meV的高质量钙钛矿薄膜。
近日,韩国能源研究院和FlexellSpace宣布,双方签署了一项技术转让协议,涉及超轻柔性CIGS太阳能电池工艺技术和技术诀窍,以实现下一代太空利用叠层太阳能电池。太空太阳能电池公司FlexellSpace将获得韩国能源研究院的超轻柔性CIGS太阳能电池技术,共同开发针对小型卫星寿命和性能进行优化的超轻薄膜双结太阳能电池,并寻求市场开发,以取代现有的III-V基太空太阳能电池。
近日,在上海市科委“2025年度关键技术研发计划‘新能源’”项目中,上海旭励携手复旦大学、上海交通大学、长三角太阳能光伏技术创新中心,凭借“卫星用轻质钙钛矿/晶硅叠层太阳电池模组关键技术研究”课题,成功中标“高效钙钛矿/晶硅叠层太阳电池及模组技术”项目。目标建成兆瓦级的卫星用轻质钙钛矿/晶硅叠层太阳电池模组示范线。
固锝电子科技(苏州)有限公司经营范围包括太阳能热发电装备销售;太阳能热发电产品销售等。新设立的新加坡孙公司经营范围涵盖设计、采购、销售、组装、集成电路芯片测试和其他辅助活动;研发、生产、销售太阳能电池用浆料及其他电子材料等。苏州固锝表示,本次对外投资事项旨在通过新加坡孙公司的运营,加强与国际客户、合作伙伴的合作,拓展海外市场份额,提升公司产品和服务的国际知名度和品牌影响力。
摘要同时实现有效的缺陷钝化和优异的电荷提取能够最大化钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)。与先前已有的基于异质结的 PSCs
不同,韩国蔚山国立科学技术院&高丽大学研究团队引入
PCE。1. 研究背景与挑战钙钛矿太阳能电池(PSCs)作为新兴光伏材料,功率转换效率(PCE)快速提升,但溶液法制备的钙钛矿薄膜存在结构缺陷(如空位、间隙、取代缺陷),导致离子迁移、复合损失
文章介绍宽带隙 (WBG) 钙钛矿太阳能电池 (PSC)
对于提高串联太阳能电池的效率至关重要,但存在严重的光电压不足和卤化物偏析,大大降低了其性能和稳定性。基于此,北京理工大学李红博等人开发
)
优取的方向和出色的光稳定性。当集成到 0.945 cm2 单片钙钛矿/硅叠层太阳能电池中时,基于 NCNT 的器件可提供 32.0% 的高效率(认证
31.7%)。这项工作强调了纳米晶体在调节
近年来,在空穴传输层(HTLs),尤其是自组装单层(SAMs)的辅助下,倒置钙钛矿太阳能电池(PSCs)发展迅速。然而,目前器件性能强烈依赖于 HTL
厚度,其厚度需严格控制在 5 nm,若
太阳能电池(PSCs)的发展现状效率已达 27%,关键依赖高效空穴传输层(HTL),如自组装单层(SAM)类分子(Me-2PACz 等),但
SAM 厚度需严格控制在~5 nm,10 nm 时效率从
从实验上证明双结叠层太阳能电池效率超过了单结S-Q理论效率极限,具有里程碑意义。针对空穴传输层所在的界面复合问题,隆基团队联合苏州大学开展研究,在新型有机自组装分子材料(SAM)设计及晶硅-钙钛矿叠层
了一种具有开壳双自由基的新型有机自组装分子。该分子展现出优异的载流子传输能力、在实际工况下的优异结构稳定性以及卓越的组装均匀性,使得基于该材料的钙钛矿太阳能电池在效率和稳定性方面均取得了显著进展。相关