硅太阳能电池因其技术成熟和高效稳定,目前在全球光伏市场中占据主导地位。然而,单结硅电池的理论效率极限(约29%)一直是制约其进一步发展的瓶颈---当光子能量高于硅的带隙时,多余的能量会以热能形式
散失。 近日关于光子倍增方向,麻省理工学院(MIT)领衔的国际团队在激子裂变增强硅太阳能电池领域取得重大突破。他们创新性地利用有机分子材料,成功将硅电池的峰值电荷生成效率提升至(138±6)%,实现
,更是对华晟在光伏技术研发与生产制造领域领先地位的高度认可。Kiwa PVEL作为全球权威的第三方光伏组件可靠性和性能测试实验室,十多年来,其产品认证计划(Product Qualification
Program, PQP)凭借严苛的测试条件和可量化的专业指标,赢得了全球范围内的广泛认可与信赖。PQP
测试涵盖热循环(TC)、湿热(DH)、机械应力序列(MSS)、冰雹序列(HSS)、电势
,在 n-i-p 结构的钙钛矿太阳能电池(PSCs)中,大约 80%
的光生载流子是在电子传输层(ETL)与钙钛矿界面起始的 300 nm 范围内生成的,这表明
ETL/钙钛矿界面处的有效
功率转换效率(PCE),并在最大功率点跟踪(MPPT)测试中,经过 1000
小时运行仍保持了初始效率的 88%。本研究强调了能级调控(包括电离能和能级结构)在提升 PSCs 器件性能与稳定性中的
超薄柔性钙钛矿太阳能电池(f-PSC)
作为便携式电源非常受欢迎,而包括钙钛矿和器件透明电极在内的关键部件的刚度导致了制造方面的挑战。2025年6月2日,香港理工大学严锋等于Advanced
Science刊发整体性优化实现高效率与机械稳健性超薄柔性钙钛矿太阳能电池的最新研究成果。该研究开发了几种策略来提高超薄f-PSC
的机械柔韧性和光伏性能。首先,在钙钛矿薄膜的边界处引入具有低
产业化储备关键装备。爱疆智能总经理袁五辉表示:"作为周三会的长期参与者,我们通过平台与众多行业领军企业深入交流与合作。"他介绍,爱疆科技深耕光伏太阳能检测设备领域,凭借自主研发的超大幅面BIPV
光伏组件测试系统,已成为行业技术标杆。通过“周三会”平台前期对接,与活动现场实地考察,中步擎天与爱疆智能达成重要合作共识。在本次活动现场,双方正式签署“基于下一代BC晶硅光伏电池与钙钛矿叠层电池的Ⅳ测试技术
的风车,一座一座怒指天云;另一个就是硅基太阳能电池板,一片一片匍匐于地,为黎民百姓收集阳光与温暖。不过,单晶硅电池也不是没有问题。从产业化角度看,面临的挑战是生产成本高、制备工艺复杂、能耗高、且会造成
% (组件面积 0.5 m2)、正反扫无迟滞、MPPT 测试 300
秒几无衰减。这是当前已知的、全球认证效率最高的大面积柔性钙钛矿光伏产品。“TCL中环”在江苏宜兴的 100 MW 中试线,采用
文章介绍可拉伸有机太阳能电池(s-OSCs)的发展需要在机械顺应性和电学性能方面实现同步突破,其挑战根源在于有机半导体与金属电极之间固有的机械不匹配。基于此,南昌大学陈义旺等人提出了一种双相界面工程
,抑制裂纹扩展速度,并减少了界面机械不匹配现象。最终,在小面积柔性器件上实现了19.58%的PCE,这是迄今为止柔性有机太阳能电池(f-OSCs)中最高的PCE之一。值得注意的是,可拉伸器件在100
-预计T80寿命超过6.7年,尽管在此未考虑的其他退化模式可能会随着持续测试而出现。我们的隔离模块显示出可逆的性能恢复过夜并且显示出与商业Si太阳能电池相当的室外稳定性,我们预计,我们的研究结果不仅将提高
2024年7月25日,南京航空航天大学张助华和郭万林院士团队报告了一种使用气相氟化物处理的可扩展稳定化方法,该方法在1次太阳照射下,实现了18.1%效率的太阳能组件(228平方厘米),加速老化预测
战略性地利用自组装单层膜(SAM)显著提高了倒置钙钛矿太阳能电池(IPSC)的界面接触和功率转换效率(PCE)。然而,SAM
和钙钛矿层之间的粘附力不足仍然是一个关键挑战,限制了进一步的性能增强
基团的组合,以优化界面化学性质。界面反应机制:深入研究界面化学反应机制,特别是POL-AVM的形成过程及其与钙钛矿层的相互作用,以便更好地控制界面结构和性能。2.提高器件稳定性和效率:长期稳定性测试
61215标准中的热循环、湿冻和湿热三项关键可靠性测试,证明了其商业化潜力。△本项目所用钙钛矿太阳能组件(PSM)在标准测试条件(STC)下的工厂内功率输出数据、屋顶光伏(PV)系统以等效满日照小时(EFSH