突破技术壁垒打造高电压组件“硬核实力”一道新能2000V超高系统电压光伏组件通过技术融合创新构建起差异化竞争优势。该项目直流侧安装容量达182MW,创新性部分采用一道新能业内首款2000V光伏组件,从设计、建设到并网发电,全方位展现高电压技术的应用优势。
钙钛矿太阳能电池因严重的非辐射复合导致光电压损失,限制了器件整体性能。为解决这一关键问题,华东师范大学保秦烨等人开发了一种通过双位点锚定桥的策略,用于调控钙钛矿与PCBM电子传输层之间的异质界面。通过形成强双位点P—O—Pb共价键,实现强化且均匀的钝化,有效降低了钙钛矿表面缺陷密度。同时,重构了钙钛矿表面能带结构,使费米能级上移并增强电场,促进钙钛矿/PCBM界面的电子提取。
需求。近日,中科院长春应化所秦川江、王利祥团队与隆基中央研究院合作,在《Science》发表突破性研究。他们创新性地设计出两种开壳层双自由基有机分子(RS-1和RS-2),成功解决了上述难题,并创下
钙钛矿/硅叠层电池34.2%
的认证效率纪录!本文我们一起学习一下本篇文章设计思路。一、分子设计:双自由基SAMs的设计与优势核心策略:通过强给体(D) - 受体(A)共轭结构实现稳定双自由基态设计
掺杂氧化锡玻璃(FTO)清洗:依次用去离子水、丙酮、异丙醇(IPA)超声清洗,随后进行 O₂等离子体处理 5 分钟。TiO₂层制备平面 TiO₂层:通过旋涂钛酸四异丙酯双 (乙酰丙酮) 的乙醇溶液(体积
相位调制机制图 2.(a)CY 的密度泛函理论(DFT)模拟优化几何结构、偶极矩及静电势分布。(b)对照组和掺入 CY 的钙钛矿太阳能电池(PSCs)的电流 -
电压(J-V)曲线。实线和虚线分别
海拔4600米的阿里地区,冬季气温常低至-35℃以下。由于“双高”(高比例新能源装机与高比例电力电子设备)导致电网强度变弱,难以支撑大规模新能源消纳。在构网储能项目启动前,30MW的光伏项目发电出力被
储能系统实现了区域电网维稳,主动提供惯量、电压支撑和瞬时支撑,提高系统阻尼水平,并抑制宽频振荡,增强系统稳定性,提高发电效益。该项目的实施过程也充分验证了华为构网技术的可靠性。在国网西藏电科院的严格测试下,该
从实验上证明双结叠层太阳能电池效率超过了单结S-Q理论效率极限,具有里程碑意义。针对空穴传输层所在的界面复合问题,隆基团队联合苏州大学开展研究,在新型有机自组装分子材料(SAM)设计及晶硅-钙钛矿叠层
了埋底界面缺陷,显著降低了表面界面非辐射复合水平。通过与双面纹理化的异质结晶硅结合,研究团队成功实现了开路电压接近2.0V,且认证效率高达34.6%的晶硅-钙钛矿串联叠层太阳电池。这项研究为新型SAM
小型双凸紧凑型透镜,可将阳光集中在一个微小的有源电池区域,并放置在太阳能电池上方,彼此相距 5 厘米和 10
厘米。Navazani
解释说,该设置增加了照射到有源光伏层的光强度,这可以“显着
设计的直接书写模式,它与更常见的 P1、P2 或 P3 模式不同。所谓的 P1、P2 和 P3 划线对应于构建单片互连的过程的三个划线步骤,这些连接在模块中的单元之间增加电压。P1 和 P3
步骤
。结果,混合沉积的宽带隙钙钛矿(1.8 eV)太阳能电池实现了 17.48%的最大效率和超过1.315 V的开路电压(Voc)。当以双端叠层配置与有机子电池集成时,叠层器件显示出26.46%的创纪录效率,在0.05 cm2的有效面积上认证效率为25.82%。
%,创稳定性纪录。未来展望机制深度探索深入研究双自由基态与钙钛矿界面的自旋相互作用机制,优化分子能级匹配以进一步提升开路电压。大面积工艺开发拓展双自由基SAMs在米级钙钛矿组件上的溶液涂布工艺,解决
FusionSolar9.0智能组串式构网型光储解决方案亮相,以最新的智能光伏战略和全球首个构网型光储解决方案,开启构网型光储新时代,面向全行业给出了响亮回答。随着新能源渗透率持续提升,电力系统“双高”(高比例
电力电子设备接入电网,作为电压源运行时,需要极高的自身同步运行能力,否则一旦发生失步和环流将威胁设备安全和系统的稳定;②宽频振荡问题:新型电力系统存在振荡频域范围广、传播复杂、机理建模与分析困难、抑制