幕墙、及采光顶等。
4工艺原理
把能将太阳光转换为电能的未用电池组件,安装在建筑物或构筑物上,使其成为建筑物的构造部分,通过逆变器等未用设施把转换成的电能传输至用电器终端或并网传入供电线路。
5
粉尘清扫基层前适量洒水降尘。
9.6密封材料和清洗溶液随用随配,用多少配多少,一次不宜配制太多;已配好的挥发性材料应尽快使用完毕。
10效益分析
10.1技术经济效益
10.1.1 施工安装
电子产品的可靠性
元件记数法适用于电子设备方案论证阶段和初步设计阶段,元器件
的种类和数量大致已确定,但具体的工作应力和环境等尚未明确时,对系统基本可靠性进行预计。其基本原理也是对元器件基本故障率
型号组串逆变器在不同温度下的使用寿命(电容、液晶屏不计算在内)
可见,温度越高,使用逆变器寿命越短。
小结:1.本文从可靠性研究的发展入手,阐述了该学科的严谨性。
2.分析介绍了影响逆变器寿命的
故障点实际值,保护可能会拒动。假如分布式光伏系统没有孤岛保护的话,会持续对短路点输送电流,有可能使光伏系统损坏。
1.2 对FTU自动装置影响分析
馈线远方终端(Feeder Terminal
相似。假如分布式系统至末端线路发生故障时,分布式系统会向故障点提供短路电流,影响FTU判别灵敏度,与分布式系统同系统电源处于同端情况相似。
以上内容分析了分布式系统对10KV线路的继电保护装置的影响
= 谐波电流*电网阻抗
1.2 逆变器输出波形
逆变器是一种电力电子设备,同时也是一种谐波源。根据逆变器自身的算法和原理----脉宽调试技术PWM逆变器的波形是等效出来的。
图3逆变器输出
波形图
图3可以看出,电压波形并不是光滑的正弦波。电流波形也有畸变。
1.3 PWM原理
脉宽调制(PWM)基本原理:控制方式就是对逆变电路开关器件(IGBT)的通断进行控制,使输出端得到一系列
,都可以分解为若干不同频率、幅度的正弦波之和。频率最低的正弦波称为基波,频率较高的正弦波称为谐波成份,基波成份与谐波成份通称为频谱。理论分析和实验都表明,下图中所示的脉冲状电流包含了丰富的谐波成份,其中
电阻发热的原理,P=I2R,零线导体的发热量会达到相线导体的3倍。更为严重的是,零线上一般都不安装过流保险装置,只能任凭零线导体发热,最终或者导致零线断开,或者诱发火灾。
从理论上讲,增加零线导体的
原理
相变材料蓄热的过程分为显热蓄热过程、潜热蓄热过程:相变材料在被加热到相变温度之前的过程为显热蓄热的过程,当温度达到相变温度之后,相变材料就开始了潜热蓄热的过程。
2.1相变材料的总蓄热
纲方程进行求解可简化需求解的方程,并更好地分析相变传热的各种影响因素。相变传热常用的无量纲量与普通热传导问题常用的无量纲量相似,其形式如下:
式中,l 是特征长度,在圆柱坐标系中,l 为其
以及效率为19.37%的黑斑片上的两个小样片进行了外量子效率测试和分析比较。
2
电致发光的原理
电致发光成像是利用载流子的电致辐射复合发光原理,对样品在外加偏压条件下发出的荧光进行收集
摘要:p型单晶硅太阳电池在el检测过程中,部分电池片出现黑斑现象。结合x射线能谱分析(eds),对黑斑片与正常片进行对比分析,发现黑斑片电池与正常电池片大部分表面的成分相同,排除了镀膜及丝网印刷
电池片的质量,通常都会对电池片进行EL 测试图像分析。从EL 的测试原理可以得知,对于电池片肉眼不可见的电池黑斑、暗片、隐裂、断栅、击穿、烧结不良等现象,EL 测试仪可以准确的测试出来并以图像呈现
温度,使电池片EL区域发暗得到解决,同时还提升了电池片效率。
1 影响并联电阻的因素分析
1.1 PERC 电池
钝化发射极背面接触(Passivated EmitterRear Contact
基本工作原理、技术参数、设备安装规程、设备调试的步骤;所有操作开关、旋钮、手柄以及状态和信号指示的说明;设备运行的操作步骤;电站维护的项目及内容;维护日程和所有维护项目的操作规程;电站故障排除指南,包括
信息:用电户、供电时间、负载情况、累计发电量等;
(2)、电站运行中出现的故障和处理方法:对电站各设备在运行中出现的故障和对故障的处理方法等进行详细描述和统计。
3、建立电站运行期档案
这项工作是分析电站
电池从本质上原理都一样,但是,隆基乐叶在单晶PERC电池结构与工艺上进行了深度开发,并且与原材料公司、设备供应商展开密切合作,在性能上做了诸多改造与提升,这些最终体现在电池性能的差异上。在具体工艺方面
种执着的理念也延续到隆基乐叶的电池与组件领域。我们对各种主流的电池组件技术都做过深入的分析和对比,然后找出最具有价值的技术路线,集中资源和力量将其快速推向量产。PERC正是我们近期坚定不移的路线。朱琛