成均馆大学(Sungkyunkwan
University)、韩国化学技术研究院(KRICT)、麻省理工学院(MIT)、韩国科学技术高等研究院(KAIST)、亚洲大学和蔚山国立科学技术研究
院(UNIST)的研究人员开发了一种基于二氧化锡(SnO2)
化学浴沉积 (CBD) 的过量配体策略,解决了CBD 的一些常见限制,如沉积时间延长、大面积基材上不均匀的成膜以及易氧化性等。SnO₂的常规
2024年2月9日德国亥姆霍兹柏林能源与材料研究中心Qiong Wang等于JACS发文,详细报道了经干燥和环境空气退火处理的 CsPbI₃
薄膜的表面分析,以及它们在钙钛矿太阳能电池中后续改性
观察到界面载流子动力学发生变化,从而改善了CsPbI₃钙钛矿太阳能电池中的载流子提取。光谱测量表明,由于环境空气退火,陷阱态密度降低。因此,基于空气退火CsPbI₃的n-i-p结构器件实现了19.8%的功率转换效率,开路电压为
1.23 V。
,同时大大增强 PSC 的稳定性。这一发现展示了这种众所周知的神经递质对 PSCs
光伏性能的惊人益处,本文通过 DFT 和分子动力学计算对其进行了合理的解释。创新点1、界面工程创新:首次将多巴胺
,避免低效 δ 相的形成,同时通过分子间有序排列构建紧凑的界面层。3、理论与实验结合:通过密度泛函理论(DFT)和分子动力学(AIMD)计算揭示多巴胺 SAM 的作用机制,发现多巴胺去质子化后形成的带负电
配体材料的扩展与优化:探索其他多齿配体(如磷酸盐、羧酸盐等)对钙钛矿成核和生长的调控作用,进一步降低成核能垒并优化结晶动力学,可能实现更高效率的器件。2.规模化制备与工艺兼容性:研究PPH修饰策略在
Upward Crystallization for
Perovskite Solar
Cells”。研究成果证明在钙钛矿底面引入多齿焦磷酸钾(PPH)可以诱导形成缺陷较少的单片钙钛矿晶粒。研究发现
,实际上困难重重。在产线制备 PSCs
过程中,存在的问题很多。引起笔者所在团队关注的技术点之一,进入是一个有趣的物理问题,即溶液印刷过程中涌现的“流变动力学”问题:众所周知,钙钛矿光伏薄膜,是采用刮涂
和伴随之的钙钛矿结晶动力学问题,就跃然纸上。这里,梳理两个与钙钛矿太阳电池制备密切相关的流变学问题或效应。解决它们,将对溶液法制备大面积钙钛矿光伏薄膜具有重要作用。“咖啡环”与“钉扎”效应第一个效应
了表面离子缺陷,调节光暗周期中离子迁移的动力学。785平方厘米工业级钙钛矿太阳能组件实现了19.6%的功率转换效率(PCE)。组件表现出增强的日间稳定性,即使在50°C下经过101次明暗循环后,仍能保持
reconstruction enables outdoor-stable perovskite solar
modules”为题发表在顶级期刊Science上。研究亮点:蒸汽辅助表面重建:科研团队开发了一种蒸汽
团队利用计算流体动力学(CFD)模拟,对LAD的内部结构进行了优化设计,并3D打印了三种不同几何构型的模型进行对比研究:●LAD 1 (金字塔形):
底部为矩形开口,四壁为直角转折并向上逐渐收窄
发表了一项突破性研究,题目为3D
laminar flow–assisted crystallization of perovskitesfor square meter–sized solar
2023年5月,《自然》期刊以封面文章报道了中国科学院上海微系统与信息技术研究所研发的创新型柔性单晶硅太阳能电池。该技术成功制备出厚度仅60微米(A4纸厚度的1/15)、弯曲半径5
mm、弯曲
角度360°的柔性器件,在保持26.8%光电转换效率的同时,攻克了单晶硅材料力学脆性的长期技术瓶颈。技术突破:研究团队通过介观对称性调控策略,采用湿法化学蚀刻与干法等离子体刻蚀相结合的边缘圆滑处理技术
副研究员在期刊《Advanced
Materials 》发文,题为“Optimizing Printed Quasi‐2D Luminescent Perovskite Films via
,从而消除了印刷薄膜中的缺陷。所得准二维钙钛矿薄膜表现出令人印象深刻的 37.40%
的光致发光量子产率以及优异的发光稳定性,使其成为各种光电子应用的有前途的候选材料。总体而言,本研究突出了 MOF
理工大学(Politecnico di Milano)的研究人员使用一种将简单的化学添加剂TEMPO与快速红外固化工艺相结合的新方法设计了一种高效且稳定的钙钛矿太阳能电池。该方法通过使用2,2,6,6-四
TEMPO-FAPI3 PSCs。TEMPO添加剂可促进增强的结晶动力学,产生具有更高均匀性和更低缺陷密度的薄膜,这已通过光致发光(PL)、轮廓测定和正电子湮没寿命光谱(PALS)得到证实。根据ISOS