直径还小。
报道称,太阳帆的原理是将太阳光照时,光子对帆面产生的冲击作为动力。光帆2号实际接收到的动力很小,仅相当于地球上一只苍蝇落到手上的力。但在没有重力和空气阻力的宇宙空间,这些动力会让飞船缓慢但持续
的加速。按照行星学会的计算,借助太阳帆带来的动力,光帆2号运行轨道高度每天可以提升500米。
由于太阳帆飞船只需要光照便可无限制进行星际航行,如果在帆面上增加太阳能电池板,还可以为飞船提供必要的能源
个薄膜结构模型,从而确定了光电转化率和透明度之间的最优平衡关系,制备出兼具11%的光电转化率和30%的透明度的有机太阳能电池。相关成果近日发表在Cell旗下的能源期刊Joule上。
发电vs透光
科学报》。
夏若曦介绍,有机光伏材料可以通过分子结构,设计成可见光吸收较弱且有相对宽而强的近红外吸收。为了进一步优化器件的光学性质,传统的周期性一维光子晶体拥有选择性反射指定波长光的特性,引入半透明
。因此,太阳能电池产业仍有巨大的增长机会,能为世界人口提供清洁和可再生能源。巨大的经济潜能推动了能源领域的发展。为了更好地利用太阳能,研究人员不断致力于使这些太阳能设备更耐用,更有效地将太阳光转化为电能
继续推进。硅太阳能电池目前在市场上占主导地位,但电池的转化效率限制很大。1961年,科学家就发现太阳能电池最明显的缺陷是高能光子会产生不必要的热量。因此,传统的硅太阳能电池只能将30%的太阳能辐射转化成
据悉,来自德国Jlich能源和气候研究所(IEK-5)的科学家们日前透露,已将钙钛矿太阳能电池的开路电压提高到了1.26 V。
研究人员表示,开路电压值是提高电池效率的关键因素,因为它显示了当光照
,应始终将开路电压与半导体的带隙进行比较。带隙较高时,开路电压也会增加但是所吸收的光子较少。
IEK-5团队表示,最常用带隙--1.6电子V的钙钛矿太阳能电池此前最大开路电压为1.21V,而当前所使用
。其相关研究成果以《异质结分子掺杂高效激子解离及长载流子寿命提升聚合物太阳能电池量子效率》为题,近日发表在美国化学会能源类旗舰期刊《美国化学会能源快报》上。 有机太阳能电池的光生电荷过程包括光子吸收
作为最受欢迎的再生能源产业,太阳能领域竞争非常激烈,目前市占率最高的太阳能电池为多晶硅与单晶硅等硅晶电池,但长江后浪推前浪,新兴的钙钛矿电池正虎视眈眈盯着市占第一的宝座。美国布朗大学与内布拉斯加大
是未来的赢家,而这种新材料看起来非常不错。
研究人员制造出1.8伏特的宽能隙钛-钙钛矿薄膜,该薄膜可以吸收更高能量的光子,其他光子则由底下的硅层吸收。虽然目前光电效率仅3.3%,远低于硅晶电池或是
相媲美。他们的研究结果在Cell Press出版的Joule期刊上发表。
目前市场上的大多数太阳能电池都是以硅为基础的,但由于它们生产成本高,能源密集,研究人员一直在寻找太阳能电池和其他光伏电池的
的晶体结构中的微小缺陷(称为陷阱)可能导致电子在其能量被利用之前卡住。电子在太阳能电池材料中移动越容易,将光子,光粒子转换成电能的材料就越有效。
在钙钛矿太阳能电池和LED中,你往往会因缺陷而失去
日前,科技部发布了《国家重点研发计划可再生能源与氢能技术等重点专项2019年度项目申报指南的通知》,按照国家重点研发计划组织管理的相关要求,将可再生能源与氢能技术等重点专项2019年度项目申报指南
予以公布。
据悉,科技部此次将调拨4.38亿元经费,以支持相关技术的发展。而太阳能作为可再生能源与氢能技术重点专项技术方向之一,是此次专项技术研发的重中之重。
新型太阳电池为重点
根据通知
(Oxford PVTM)D轮融资,投资金额2100万英镑。
4月26日,长江三峡集团旗下三峡资本联合中国三峡新能源与杭州纤纳光电科技有限公司(简称纤纳光电)宣布,三峡资本以战略投资者身份注资纤纳光电
领域,一般使用的是有机无机复合的钙钛矿。钙钛矿一般是作为太阳能电池的吸收层来使用,在接受太阳光的照射以后,钙钛矿吸收了光子以后会产生电子空穴对。电子带负电,而空穴可以看成是带正电。当阳光照射到这些电子
潜力巨大,有可能使太阳能转换极限得以提高。相关论文发表在《自然光子学》杂志上。
纳米线的结构为圆柱状,直径约为人类发丝的万分之一。纳米线具有独特的物理光吸收性能,有预测认为,其在太阳能电池以及未来的
博士学位的彼得克洛格斯特拉普解释说,通过共振散发出的光子更加集中(太阳能的转换正是在散发光子的过程中实现的),这有助于提高太阳能的转换效率,从而使得基于纳米线的太阳能电池技术得到真正的提升。
典型的