、蓄电池、制氢等多种方式储存, 太阳能+蓄能几乎可以满足中国未来稳定的能源需求。太阳能是未来最清洁、安全和可靠的能源,发达国家正在把太阳能的开发利用作为能源革命主要内容长期规划,光伏产业正日益成为
国际上继IT、微电子产业之后又一 爆炸式发展的行业。光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的
索比光伏网讯:中国科学院光化学转换与功能材料重点实验室:面向国家重大需求,以光化学和光物理为基础,光功能材料与光化学转换为导向,开展分子光化学、有机光电子材料与集成器件应用基础性研究。重点研究超分子
分子光化学中的重要基本科学问题,包括基元功能分子的设计与合成,有机光电功能材料与器件的构筑原理和方法,光电功能的调控,超分子体系中的电子转移、能量传递和化学转换。(2) 有机光信息材料及器件:研究纳米
/ncomms2401.html)。光催化分解水制氢是利用太阳能制备燃料的最具挑战性的反应之一,其中基于半导体的光催化中光激发电子和空穴的有效分离和迁移是提高光催化效率的关键。李灿研究团队为解决这一核心科学
索比光伏网讯: 催化基础国家重点实验室及洁净能源国家实验室(筹)李灿院士领导的太阳能光催化研究团队在太阳能光催化研究中确认基于半导体光催化剂的不同晶面之间可以实现光生电子和空穴的空间分离,相关结果以
替代晶格氧的掺杂原子进入体相的新机制,获得了梯度掺杂的锐钛矿TiO2,实现了可见光全谱强吸收,将TiO2光电解水产氢的活性光响应范围拓展至700纳米。就像光催化分解水制氢一样,光催化可实现太阳能到化学能
(Al2O3)替代光激发能力良好的二氧化钛(TiO2)作为电极,将溶液可处理的太阳能电池的转化效率提升至10.9%,创造了新的纪录。这项研究利用了氧化铝能够充当惰性支架,迫使电子停留其中,并通过超薄的吸收体
自然光学追踪融为一体,能够安装在倾斜的地面或曲线墙上,适合各种建筑表面。除了在晴朗天气下,这个全新的太阳能发电器还能集中漫射自然光甚至是月光,以适应末日方舟的需要。 太阳能 WIFI 信号发射器一款
中分布最广泛的物质,它构成了宇宙质量的75%,二次能源。工业上生产氢的方式很多,常见的有水电解制氢、煤炭气化制氢、重油及天然气水蒸气催化转化制氢等。方舟中储存了大量液态氢,以备不时之需。利用氢气和氧气
能源的定义是自然界赋存的已经查明和推定的能够提供热、光、动力和电能等各种形式的能量来源。能源自古以来是人类生存的保障,人类社会的发展离不开优质能源的出现和先进能源技术的使用。上期我们
生物能。其实,又岂止是生物能,其它许多能量,如风能、化学能、水能,也无一不来源于太阳能。地球之所以形成生物,全靠太阳提供的热和光,所以人们才说:万物生长靠太阳。人类从降生之初,就从不自觉到自觉地利
索比光伏网讯:近日,中科院金属所沈阳材料科学国家(联合)实验室先进炭材料研究部制备出具有可见光全光谱吸收的红色二氧化钛光催化材料,这意味着有可能利用二氧化钛基光催化材料实现高效可见光分解水制氢,对于
太阳能的大范围高效利用具有重要的意义。相关成果先后发表于国际学术期刊《先进功能材料》和《能源与环保科学》。据介绍,通过光催化实现太阳能到化学能的转化,例如光催化分解水制氢,是获得新能源的一个极具前景的
索比光伏网讯:光催化可实现太阳能到化学能的转化(如光催化分解水制氢),是获得新能源的一个重要途径。发展可有效吸收可见光(波长为400-700nm)的光催化材料是实现高效太阳能光催化转化的前提,然而
TiO2光电解水产氢的活性光响应范围拓展至700nm。掺杂阴离子难以进入金属氧化物体相本质上是由M-O键的高键能以及掺杂离子与替代晶格离子间的电荷差异造成的。研究人员通过先期发展的掺杂剂与前躯体合而为一的
。②光电转换。其基本原理是利用光生伏打效应将太阳辐射能直接转换为电能,它的基本装置是太阳能电池。光化利用这是一种利用太阳辐射能直接分解水制氢的光化学转换方式。它包括光合作用、光电化学作用、光敏化学作用及光分解
奥秘,便可实现人造叶绿素发电。目前,太阳能光化转换正在积极探索、研究中。光生物利用通过植物的光合作用来实现将太阳能转换成为生物质的过程。目前主要有速生植物(如薪炭林)、油料作物和巨型海藻。
索比光伏网讯:从太阳能中捕获能量是对环境影响最小,并且能够满足太瓦(Terawatt)级绿色能量需求、缓解能源危机的最直接有效方式。如果能够在半导体材料表面捕集光,在固液界面利用太阳光催化分解水产
发现,当光照在催化剂表面上,光生电子还原水放出氢气,水同时被光生空穴氧化产生过氧化氢(H2O2),H2O2的存在不利于催化活性,但在通入氮气或者将密闭体系敞开在无光照、常压大气等条件下,就能释放材料表面