,是制约短期产业化核心之一。成本构成看,硅片、浆料、设备折旧和靶材成本占比中分别为47%、25%、12%和4%。HJT技术需要用的N型硅片整体价格偏高,低温银浆单片用量超过200mg,是目前PERC用量
/GW,到2025年有望降至4亿元/GW;银浆方面,基于MBB多主栅技术,2021年低温银浆单耗约为160mg/pcs,到2025年,通过0BB无主栅技术的推广,可降至100mg/pcs。异质结电池
天然的对称结构使其具有更高的双面率,并有利于自动化生产,更适合大规模生产。 同时HJT的效率提升潜力高,叠加钙钛矿技术最高效率可达30%以上,自带的低温工艺、N型电池等天然优势更利于实现薄片化,为
循环经济利用。 首先,需要提升综合能源系统数字化水平,这是系统高效运行的关键要素;其次,提升产业群内电气化和可再生能源应用水平。 具体而言,可将一些中低温度、压力的工业工艺直接电气化,以提高群内电气化
,在2020年市占率已经达到了25.5%,且未来有望进一步提升[3]。 背板 背板位于太阳能电池组件背面的最外层,保护电池组件免受外界环境的侵蚀,起到耐候绝缘的作用,需具备高水平的耐高低温、耐紫外
生产效率和产品良率上更有优势和提升空间, 而良率也是目前 TOPCon 产业化遇到的最大瓶颈。同时,HJT 是在250℃低温环境下制 备,相比于传统 P-N 结在 900℃高温下制备,一方面有利于薄片
产业化核心之一。成本构成看,硅片、浆料、设备折 旧和靶材成本占比中分别为 47%、25%、12%和 4%。HJT 技术需要用的 N 型硅 片整体价格偏高,低温银浆单片用量超过 200mg,是目前
系列产品,采用先进的MBB多栅栏技术与低温无损切割技术,总体功率提升约2~3%,隐裂风险可大幅度降低,该系列组件覆盖了410W-660W的功率区间,可满足多场景应用,兼具系统适配性、安装兼容性以及更低
。同时由于 HJT 电池双面对称,正反面受光照后都能发电,可以做成双面发电组件。
(2)低温制造工艺。HJT 电池采用硅基薄膜工艺形成 p-n 结发射区,制程中的最高温度就是非晶硅薄膜的形成
温度(200 C ),避免了传统晶体硅电池形成 p-n 结的高温(950C),采用低温工艺在降低能耗的同时还可以减少对硅片的热损伤,这就是说, HJT 电池可以使用薄型硅片做衬底,有利于降低材料成本
成本组成分析,主要构成有转化效率、设备、硅片、关键辅材。其中银浆的降本是目前异质结电池在产业化中的难点,异质结低温银浆耗量在240 mg,单片耗量是PERC电池的近3倍。丝印技术作为银浆降本的技术路线之一
可以在低温固化时实现出色的接触电阻率。SOL590 Pro专为大规模生产中的细线丝网印刷工艺而设计,可以帮助电池制造商减少银浆用量。此外,该银浆还适用于ITO和IWO技术。 随着双碳目标升级为国家