相位调制机制图 2.(a)CY 的密度泛函理论(DFT)模拟优化几何结构、偶极矩及静电势分布。(b)对照组和掺入 CY 的钙钛矿太阳能电池(PSCs)的电流 -
电压(J-V)曲线。实线和虚线分别
摘要同时实现有效的缺陷钝化和优异的电荷提取能够最大化钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)。与先前已有的基于异质结的 PSCs
不同,韩国蔚山国立科学技术院&高丽大学研究团队引入
重叠区域),J-V 测试使用 0.0836 cm² 金属掩膜图 1. P3CT 与 TBB 掺杂的表征(A) P3CT 和 TBB 的分子结构。(B) P3CT-TBB 中电荷分布的密度泛函理论
(A) 不同厚度 P3CT 器件的 J-V 曲线及倒置钙钛矿太阳能电池(PSCs)的结构。(B) 不同厚度 P3CT-TBB 器件的 J-V 曲线。(C 和 D) 不同厚度 (C) P3CT 和 (D
层的稳定机制。a在电极的高真空热蒸发期间PSC的示意图,显示了基于BCP的器件中钙钛矿膜的表面损伤和基于PEI/ PDMEA的器件中完整的钙钛矿层。B,c电极高真空热蒸发前后钙钛矿层的N 1 s和
) RS-2 的温度依赖性ESR信号。图2. 评估SAMs稳定性、载流子传输速率及组装密度与均匀性的电化学表征技术(A) 分子溶液电化学测试示意图。(B) 采用三电极系统在0.1 M高氯酸四丁基铵(TBAP
均匀性和溶液加工性。图4. 钙钛矿太阳能电池的光伏性能(A) 基于不同SAMs的冠军器件反向扫描J-V曲线(B) 电池的填充因子(FF)损失分析(C) 基于MeO-2PACz和RS-2的电池与微型
近年来,以2PACz为代表的自组装单分子层(SAMs)因其低寄生吸收、分子结构简洁、能级可调等优势,在钙钛矿和有机太阳电池(OSCs)中展现出广阔应用前景。但受限于分子本身的离散特性,如何使其在
ITO电极表面构筑致密均匀的薄膜仍是一个重大挑战。为了提升SAM作为空穴传输层在电极上的覆盖率,中国科学院化学研究所李永舫院士团队在前期研究基础上,将SAM
MeOF-4PACz中的柔性烷基连接
线切割(右)。(B)PDINN、PDINN:F8 CuPc和PDINN:F16 CuPc膜的AFM相位图像(左)和相应的原纤维直径的统计分布(右)。图3. (a)电极、界面层和活性层的能级图。(B
SP 策略的器件的J–V曲线及插入的相应直方图(23–42
个电池,拟合高斯分布)。a,铟锡氧化物(ITO)/ 自组装单层膜(SAM)/Cs₀.₀₅FA₀.₉₅PbI₃(PEAI)/LiF/C
₆₀/BCP/Ag
器件,钙钛矿在氮气气氛中顺序沉积,使用 23 个电池推导统计数据。b,ITO/SAM/(Cs₀.₀₅FA₀.₉₅PbI₃)₀.₈(FAPbBr₃)₀.₂(CF₃-PEAI
小时后仍保持初始效率的90.6%,展现出卓越的高温光稳定性。该研究为开发极端工况下高性能、长寿命钙钛矿太阳能电池提供了重要设计思路。图1 去质子化及副产物形成的抑制a) 研究的二维间隔阳离子分子结构b
、铅碘反位缺陷Pb-I)图5 器件性能表征a) 太阳能电池器件结构示意图b) 对照组、PEAI钝化与NAMI钝化器件的冠军电池电流密度-电压(J-V)特性曲线c) 三种器件(对照组/PEAI钝化
戴设备、建筑一体化光伏(BIPV)等创新应用铺平道路。光学可调:通过调整化学成分(A、B、X位离子),带隙可在较宽范围内精细调控,特别适合与硅电池组成叠层电池(Tandem)互补光谱吸收钙钛矿太阳能电池
文章介绍可拉伸有机太阳能电池(s-OSCs)的发展需要在机械顺应性和电学性能方面实现同步突破,其挑战根源在于有机半导体与金属电极之间固有的机械不匹配。基于此,南昌大学陈义旺等人提出了一种双相界面工程
)基底,其溶液制备和退火过程与小面积光伏器件一致。可拉伸模组使用沉积的聚对二甲苯膜作为基底,并采用PH1000作为透明电极,其余制备过程与柔性模块相同。激光刻蚀具体如下:1. P1(200 mm/s



