,组件前后间距为2.5米,地面的反射率80%。
图6
当离地高度为0.2米,背面的发电增益为15%,当离地高度为1米时,背面的发电增益接近20%。
从曲线上的数据可知,当离地高度在0.5米 土地平整度等选择最佳的安装高度。
图7
5、发电增益的计算公式
其中:
a = 1.037
A = 组件前后间距
E = 2.718
B = 8.691
H = 组件最低点和
:
a) 选用材料、元器件的环境适应性。
b) 结构设计水平,包括热设计、抗振、防冲击、防腐蚀、PCB布局等设计水平。
c) 制造工艺水平,包括结构件、部件、元器件、单板防护的工艺水平 应对措施确保器件内部温度相对平衡,降低温差和凝露风险。在设计中通过软件热设计仿真,分析散热器、内部功率管、电容等器件的热数据,合理布局,采用内部风道祛除远端器件的高温风险,平衡箱体内部的环境温度,如图
弱光发电能力提高又可带来:
A. 低光强时组件相对转换效率提高
B. PERC组件对近红外光转换效率更高
本文会结合小系统与模拟做一些细节讨论。尤其需要注意的是,组件的衰减对发电的结果有很大的 测试仪可以方便的测试单块组件的发电情况,测试原理与组串逆变器类似,根据每分钟的功率得到组件的直流侧发电量,数据的参考价值优于使用微型逆变器。以下实证即采用IV多通道测试仪(Daystar