
通讯作者:南京工业大学秦天石 & Jiupeng Cao
锡铅混合(Sn–Pb)钙钛矿太阳能电池(PSCs)是推动全钙钛矿叠层太阳能技术发展的关键,因其解决了单结器件的效率瓶颈。
两大基本问题:
1、PEDOT:PSS 由于其酸性本质和吸湿性,限制了器件的性能与稳定性。
2、含锡钙钛矿的快速结晶过程,阻碍了均匀、高质量锡铅混合钙钛矿薄膜的制备。
本研究将 4 - 磺基邻苯二甲酸三铵盐(SATS)作为多功能添加剂,同时引入 PEDOT:PSS 层与钙钛矿前驱体溶液中。SATS 可调控 PEDOT:PSS 的物理化学性质,并减缓钙钛矿结晶速率,从而制备出结晶度更高的薄膜。
通过这些协同效应,优化后的单结锡铅混合钙钛矿太阳能电池实现了 23.85% 的功率转换效率(PCE);将该器件集成到两端全钙钛矿叠层结构中,进一步获得了 28.74% 的优异效率。

图 1(Figure 1)
a) 空穴传输层(HTL)与钙钛矿层的 SATS 处理流程示意图b) 未添加 SATS 的 PEDOT:PSS 薄膜原子力显微镜(AFM)图像c) 添加 SATS 的 PEDOT:PSS 薄膜 AFM 图像d) PEDOT:PSS 薄膜的拉曼光谱(Raman spectra)e) 未添加 SATS 的 PEDOT:PSS 薄膜开尔文探针力显微镜(KPFM)图像f) 添加 SATS 的 PEDOT:PSS 薄膜 KPFM 图像g) PEDOT:PSS 薄膜的电导率(conductivity)

图 2(Figure 2)
a) SATS、碘化甲脒(FAI)及 SATS-FAI 复合物的傅里叶变换红外光谱(FTIR spectra)b) SATS、SATS - 碘化铅(PbI₂)及 SATS - 碘化锡(SnI₂)复合物的 FTIR 光谱c) 碘化铅(PbI₂)、碘化锡(SnI₂)及 FAI 与二甲基亚砜(DMSO)、SATS 的结合能(binding energy)d) 对照组、e) HTL 添加 SATS 组、f) HTL 与钙钛矿前驱体均添加 SATS 组的锡铅混合钙钛矿薄膜退火过程原位光致发光光谱(in situ PL spectra)g) 对照组、h) HTL 添加 SATS 组、i) HTL 与钙钛矿前驱体均添加 SATS 组的锡铅混合钙钛矿薄膜退火过程原位紫外 - 可见光谱(in situ UV–vis spectra)j) 对照组、k) HTL 添加 SATS 组、l) HTL 与钙钛矿前驱体均添加 SATS 组的锡铅混合钙钛矿薄膜掠入射广角 X 射线散射图谱(GIWAXS profiles)

图 3(Figure 3)
a) 对照组、b) HTL 添加 SATS 组、c) HTL 与钙钛矿前驱体均添加 SATS 组的锡铅混合钙钛矿薄膜扫描电子显微镜(SEM)图像d) 对照组、e) HTL 添加 SATS 组、f) HTL 与钙钛矿前驱体均添加 SATS 组的锡铅混合钙钛矿薄膜掩埋界面(buried interface)SEM 图像g) 对照组、h) HTL 添加 SATS 组、i) HTL 与钙钛矿前驱体均添加 SATS 组的锡铅混合钙钛矿薄膜锡(Sn)3d X 射线光电子能谱(XPS spectra)

图 4(Figure 4)
a) 对照组、b) 空穴传输层(HTL)添加 SATS 组、c) HTL 与钙钛矿前驱体均添加 SATS 组的锡铅混合(Sn-Pb)钙钛矿薄膜开尔文探针力显微镜(KPFM)图像d) 钙钛矿薄膜的表面电势差(surface potential differences)e) 锡铅混合钙钛矿薄膜的紫外光电子能谱(UPS spectra)f) PEDOT:PSS 与锡铅混合钙钛矿薄膜的能级图(energy level diagram)g) 正面激发、h) 背面激发条件下钙钛矿薄膜的光致发光光谱(PL spectra)i) 电子单载流子器件的空间电荷限制电流(SCLC)曲线

图 5(Figure 5)
a) 最优器件的电流密度 - 电压(J-V)曲线b) 锡铅混合钙钛矿太阳能电池(PSCs)的外量子效率(EQE)光谱c) 计算得到的传输损耗(transmission loss)、开路电压损耗(VOC loss)、填充因子损耗(FF loss)及总转换能量损失d) 相对于肖克利 - 奎伊瑟极限(S–Q limit)的填充因子损耗机制示意图e) 封装器件在氮气手套箱中、AM 1.5 G 光照条件下的最大功率点(MPP)稳定性测试f) 两端(2T)全钙钛矿叠层太阳能电池的器件结构示意图g) 两端(2T)全钙钛矿叠层太阳能电池的 J-V 曲线h) 两端(2T)全钙钛矿叠层太阳能电池的 EQE 光谱
器件制备
窄带隙钙钛矿太阳能电池(NBG PSCs)的制备流程
锡铅混合钙钛矿前驱体的制备:将 46.8 mg 碘化铯(CsI)、185.8 mg 碘化甲脒(FAI)、85.9 mg 碘化甲胺(MAI)、335.3 mg 碘化锡(SnI₂)、414.9 mg 碘化铅(PbI₂)、14.1 mg 氟化锡(SnF₂)及 4.0 mg 甘氨酸盐酸盐(GlyHCl)溶解于 1 mL N,N - 二甲基甲酰胺(DMF): 二甲基亚砜(DMSO)混合溶剂(体积比 3:1)中;随后向前驱体中加入浓度为 1% 的 4 - 磺基邻苯二甲酸三铵盐(SATS),溶液搅拌过夜后,经 0.22 μm 聚四氟乙烯(PTFE)滤膜过滤备用。
预处理的氧化铟锡(ITO)导电玻璃衬底依次用洗涤剂、去离子水、乙醇各超声清洗 20 分钟,随后进行 15 分钟臭氧等离子体处理。将 PEDOT:PSS 水分散液(经 0.45 μm 滤膜过滤)以 4000 rpm 转速旋涂于 ITO 表面 30 秒,150 ℃退火 20 分钟;界面修饰组则在 PEDOT:PSS 溶液中加入 SATS,使其浓度达到 1 mg/mL。
窄带隙(NBG)钙钛矿薄膜采用两步旋涂法制备:第一步转速 1000 rpm(10 秒),第二步转速 4000 rpm(40 秒);在高速旋涂阶段结束前 20 秒,向衬底表面滴加 300 μL 氯苯(CB)。薄膜经 100 ℃退火 10 分钟后,通过热蒸发依次沉积电子传输层与电极层,具体包括 C₆₀(20 nm)、BCP(7 nm)及银(Ag,90 nm)。
两端(2T)全钙钛矿叠层太阳能电池的制备流程
宽带隙(WBG)钙钛矿前驱体的制备:将 62.4 mg 碘化铯(CsI)、165.1 mg 碘化甲脒(FAI)、221.3 mg 碘化铅(PbI₂)及 264.2 mg 溴化铅(PbBr₂)溶解于 1 mL DMF:DMSO 混合溶剂(体积比 3:1)中,搅拌过夜备用。
ITO 导电玻璃衬底依次用洗涤剂、去离子水、乙醇各超声清洗 20 分钟,氮气吹干后进行 15 分钟臭氧等离子体处理。将氧化镍(NiOₓ)溶液(5 mg/mL,去离子水为溶剂)以 3000 rpm 转速旋涂于衬底表面 30 秒;随后在氮气手套箱中,将 Me₄PACz 乙醇溶液(0.5 mg/mL)以 3000 rpm 转速旋涂于 NiOₓ层表面 30 秒。
宽带隙(WBG)钙钛矿薄膜采用两步旋涂法制备:第一步转速 2000 rpm(10 秒),第二步转速 4000 rpm(40 秒);在第二步旋涂第 20 秒时,向薄膜表面滴加 120 μL 氯苯(CB)。薄膜经 100 ℃退火 10 分钟后,热蒸发沉积 20 nm 厚 C₆₀层;随后通过原子层沉积(ALD)技术,以四(二甲胺基)锡(TDMA-Sn)和超纯水为前驱体,在 90 ℃条件下沉积氧化锡(SnO₂)层;接着热蒸发沉积 1 nm 厚金(Au)层;最后按照上述窄带隙钙钛矿电池的制备流程,完成叠层器件底电池的制备。
原文:https://doi.org/10.1002/ange.202518800
索比光伏网 https://news.solarbe.com/202512/02/50013750.html

