助力钙钛矿领域发展!浙江大学赵保丹入围2025年《麻省理工科技评论》“35岁以下科技创新35人”

来源:钙钛矿工厂发布时间:2025-09-09 10:04:40

9月8日,2025年《麻省理工科技评论》“35岁以下科技创新35人”全球入选者正式发布。在这 35 位入选者中,有人开发了新型医疗方法,有人对政策制定产生了重要影响,有人发明了新的计算器件,还有一些人在领导着公司。这些科学家和企业家凭借其早期的卓越成就以及运用自身专业技能和知识解决重大问题的能力,从全球数百位候选人中脱颖而出。

赵保丹在发光二极管方面的创新有望带来新一代的显示技术。

34 岁的赵保丹克服了诸多障碍,探索了新型半导体材料“钙钛矿”的发光二极管(LED)应用并实现突破。她的工作有望带来更明亮、色彩更纯正、价格更低的屏幕——同时还能提高能量利用效率。

“钙钛矿具有出色的发光特性,比如色彩可调性和色彩纯度,”她说道,“它还可以通过溶液进行加工,用于柔性电子设备。”而且由于钙钛矿原材料的成本比传统半导体更低,如转化为产品将具有成本优势。

最早的钙钛矿发光二极管于 2014 年由剑桥大学报道,当时的器件亮度低、寿命短且效率低。

赵保丹的首次突破之一是在剑桥大学攻读博士期间,通过在准二维钙钛矿中引入高分子聚合物,将钙钛矿 LED 的效率从当时的 10% 左右提高到 20%。这一成果作为封面论文发表在《自然·光子学》上。接下来,在回到祖国中国、加入浙江大学后,她和团队人员解决了钙钛矿 LED 领域的 “最大挑战”:在国际上率先实现了超长寿命的钙钛矿 LED。为此,他们在钙钛矿晶界处引入了一种分子稳定剂,阻止离子在电场下的移动以防止钙钛矿 LED 的性能退化。

2024 年,赵保丹与团队实现了钙钛矿半导体的可控 p/n 型掺杂,基于这种技术的绿光钙钛矿 LED 峰值亮度达到了 116 万尼特的新纪录。相比之下,大多数笔记本电脑屏幕的最高亮度约为 1000 尼特。

赵保丹目前正在着手研究钙钛矿 LED 的微型化、阵列化和集成化,同时不影响其效率,而这正是目前的显示技术所难以实现的。在今年 3 月发表的《自然》论文中,她和团队人员制造的钙钛矿 LED 的最小像素尺寸,只有过去世界上最小 LED 的五分之一。


索比光伏网 https://news.solarbe.com/202509/09/50008078.html
责任编辑:wanqin
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
中山大学毕冬勤AM:邻苯二酚锚定基团助力锡-铅钙钛矿全钙钛矿叠层效率突破28.3%来源:知光谷 发布时间:2025-12-24 09:19:15

本研究中山大学毕冬勤等人首次设计并引入一种新型SAM分子——9--9H-咔唑,其具有共轭邻苯二酚锚定基团,应用于锡-铅钙钛矿电池中。此外,DOPhCz加速空穴提取并减少器件工作过程中的化学扰动。应用于全钙钛矿叠层电池时,效率达到28.30%。高效稳定全钙钛矿叠层电池:基于DOPhCz的Sn-Pb子电池效率达24.17%,全钙钛矿叠层效率达28.30%;在最大功率点连续运行500小时后仍保持80%初始效率,界面与运行稳定性显著优于2PACz体系。

浙江大学王勇 AEL: 离子位点竞争策略用于增强钙硅叠层光伏器件中宽带隙钙钛矿的稳定性来源:先进光伏 发布时间:2025-12-23 11:00:37

论文概览宽带隙钙钛矿的稳定性是实现高效钙钛矿/硅叠层光伏器件的关键,但由于宽带隙钙钛矿中卤化物偏析导致的不稳定性仍然是一个重大挑战。结论展望本研究创新性地提出了一种离子位点竞争策略,通过精心设计的多Cl-源前驱体组分优化,实现了Cl离子在钙钛矿晶格与间隙位点的可控分布。

青岛科技大学周忠敏&中科院青岛生物能源与过程研究所逄淑平最新JACS:基于软硬酸碱理论设计硫醇交联剂,钙钛矿/SAM界面强韧化来源:先进光伏 发布时间:2025-12-22 16:34:53

论文概览针对倒置结构钙钛矿太阳能电池中钙钛矿/自组装单分子层异质界面机械稳定性差、制约器件长期可靠性的关键瓶颈,青岛科技大学与中国科学院青岛生物能源与过程研究所联合团队创新性地基于软硬酸碱理论,设计并筛选出一系列硫醇(-SH)基交联剂,用于强化界面化学键合并提升稳定性。

近两千亿!电力企业科创投入再增加来源:中国电力报 发布时间:2025-12-17 15:37:53

日前,由中国电力企业联合会编写的《中国电力行业科技创新年度发展报告2025》发布。根据《报告》,2024年,我国主要电力企业平均研发经费投入强度为2.82%,高于全国2.68%的平均水平。《报告》显示,近年来,我国电力科技投入不断加大。《报告》统计,2024年,主要电力企业从事科研工作人员23.71万人,硕博学历人才占比持续提高。《报告》总结,当前,我国能源电力领域科技创新呈现全面突破、深度融合、引领发展的强劲态势。

炎和科技与昕诺飞达成战略合作,将聚焦钙钛矿光能电池与智能照明系统的深度融合!来源:钙钛矿光链 发布时间:2025-12-17 14:48:33

12月12日,湖南炎和智能科技有限公司(以下简称“炎和科技”)与全球照明科技领导者昕诺飞(中国)投资有限公司(以下简称“昕诺飞”)正式签署战略合作协议。双方将聚焦钙钛矿光能电池与智能照明系统的深度融合,联合打造“光发电+光服务”行业新生态,为智能家居、智慧城市、健康照明等领域的规模化应用提供创新解决方案,助力行业高质量发展。

Journal of the American Chemical Society:二维有机-无机杂化钙钛矿领域取得了重要进展来源:钙钛矿材料和器件 发布时间:2025-12-16 16:28:50

鉴于有机阳离子具有丰富的可调性,理解二维钙钛矿的激子动力学行为成为拓展二维钙钛矿在光电子器件应用的关键。理论研究指出该体系具有II型的电子能级排列,认为低于带隙的吸收峰是电荷转移激子。这为进一步设计光子上转换的二维钙钛矿材料提供了新设计原理。该工作得到了国家自然科学基金面上项目等基金的资助。

中科院化学所孟磊团队:氧化还原改进型混合 SAM 助力倒置钙钛矿电池来源:先进光伏 发布时间:2025-12-15 22:13:19

钙钛矿太阳能电池凭借高功率转换效率(PCE)和低成本制备优势,成为光伏领域的研究热点。其中,采用镍氧化物(NiOₓ)/ 自组装单分子层(SAM)作为空穴传输层(HTL)的倒置钙钛矿太阳能电池(p-i-n 型),因结构简单、兼容性强,更具产业化潜力。然而,NiOₓ表面存在 Ni²⁺和 Ni³⁺混合价态的固有问题,不仅导致 SAM 层难以均匀生长,影响电荷传输效率,高活性的 Ni³⁺还会加速钙钛矿材料分解,严重制约器件的稳定性。为解决这一核心瓶颈,中国科学院化学研究所李永舫&孟磊团队团队设计了一种创新策略:利用新型SAM分子MeOF-4SHCz靶向NiOx表面的富Ni³⁺区域,通过局域氧化还原反应原位形成S–O–Ni键;同时,常规SAM分子MeOF-4PACz继续在Ni²⁺区域通过P–O–Ni键实现稳定锚定。当这两种分子以4:1(w/w)的优化比例复合后,在NiOx表面形成了协同作用的混合SAM层,其覆盖度与均匀性得到显著提升。基于此氧化还原改进型(ROI)-SAM空穴传输层所构筑的倒置钙钛矿太阳能电池,获得了26.5%的优异PCE(认证效率26.28%),并在持续最大功率点(MPP)运行下展现出超过1000小时(T90)的长期稳定性。

南科大许宗祥团队在钙钛矿光伏材料研发领域取得新进展来源:钙钛矿材料和器件 发布时间:2025-12-15 21:56:19

近期,南方科技大学理学院化学系教授许宗祥及合作团队在钙钛矿光伏关键材料研发取得新进展,在材料、能源领域高水平期刊Advanced Energy Materials、Joule发表相关学术论文。

清华大学团队在钙钛矿深蓝光二极管研究领域取得新进展来源:钙钛矿材料和器件 发布时间:2025-12-15 21:51:46

清华新闻网12月12日电 钙钛矿材料因其优异的光电特性与可溶液加工等优势,在发光二极管领域展现出广阔的应用前景,尤其在色纯度、荧光量子产率及波长可调性方面表现突出。目前,钙钛矿蓝光器件的研发主要围绕混合卤素与准二维结构两种策略展开,通过组分调控与维度工程,天蓝光区域的发光效率已提高至25%以上,显示出良好的发展态势。

蒋琦&游经碧Nat Commun:宽带隙钙钛矿相均匀分布助力高性能钙钛矿-硅叠层太阳能电池来源:知光谷 发布时间:2025-12-15 18:12:11

金属卤化物钙钛矿-硅叠层太阳能电池为突破单结器件的效率极限提供了有前景的路径,其中宽带隙(WBG)钙钛矿顶电池的优化仍是关键。

钙钛矿晶界能带反转!山东大学王亮&陈召来&于伟泳最新发文:新型界面钝化剂助力空气制备高效率宽带隙钙钛矿来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-10 16:27:26

为此,作者提出了一种晶界能带反转策略,采用二丁基二硫代氨基甲酸铅作为界面钝化剂,同时实现了对1.68eV宽带隙钙钛矿薄膜的缺陷钝化以及晶界与晶粒间能带弯曲方向的反转。本研究通过晶界能带反转策略,成功实现了高效率与环境制备的兼容性,推动了钙钛矿光伏技术的产业化进程。第一性原理计算与系统表征进一步证实,PbDBuDTC的官能团可有效钝化钙钛矿晶格中的空位缺陷,抑制非辐射复合。