
甲脒碘化铅量子点(FAPbI₃ QDs)因其优异的光电特性而被广泛应用于光伏应用。然而,其软晶格结构中较弱的离子键会导致结构变形,从而造成FAPbI₃ QDs的电荷分布紊乱。应力工程不仅可以通过增强离子键来缓解固有的软晶格问题,还可以促进电子局域化,从而增强载流子传输。鉴于此,西安建筑科技大学阙美丹&魏剑于《Advanced Materials》刊发文,题为"Strain-Induced Intrinsic Constraint BoostsSlow-Thermalization and Fast-Transfer of Carriers in FAPbI 3Quantum Dot Solar Cells"。本研究引入了一种应变诱导本征约束(SIC)策略,利用富氮配体的空间体积调控,在FAPbI₃ QDs中诱导各向异性表面应变(ε=0.53–0.78)。通过系统设计氮配位配体,醋酸胍(GA-酸)被证明能够通过填充A位空位来促进可控的各向异性晶格应变,同时建立自增强应力,从而有效增强Pb-O/I的反键相互作用并减少Pb-Pb轨道重叠,从而产生“慢热化和快转移”的协同效应,增强电荷转移。采用SIC方法设计的PQDSC实现了17.11%的光电转换效率和20.96 mA·cm−2的最高短路电流密度。预期应力诱导的纳米晶体调控将为提高钙钛矿太阳能电池的光伏性能提供关键见解。
创新点:
1.应变诱导本征约束(SIC)策略
本文创新性地提出了一种通过氮富集配体(GA-acid)的位阻调控来诱导FAPbI₃量子点产生各向异性表面应变(ε=0.53-0.78)的策略。这种SIC策略通过填充A位空位同时建立自增强应力,有效强化了Pb-O/I的反键相互作用并减少了Pb-Pb轨道重叠。
2.独特的"慢热化-快转移"协同机制
研究发现压缩应变增强了Pb-O/I反键耦合,建立了声子瓶颈效应,延长了载流子热化时间;而拉伸应变则通过调节Pb-Pb轨道重叠,实现了快速的载流子转移。这种独特的协同机制突破了传统量子点太阳能电池中热化与转移速度的矛盾。
3.多氮链配体设计
系统设计了一系列N-COOH配体(包括picolinic acid、IDA-acid和GA-acid),其中三氨基线性结构的GA-acid表现出最佳性能。这种配体不仅能同时钝化VFA+和VI-缺陷,还能通过其-COO-和-NH-官能团与量子点表面形成配位键和氢键。
未来与展望:
1.材料体系拓展
探索更多类型的氮富集配体,系统研究配体结构与应变诱导效果的关系,开发具有更高配位能力的多功能配体,实现更精确的应变调控。研究在其他钙钛矿量子点体系(如CsPbI₃、MAPbI₃)中的应用潜力。
2.机理深入研究
通过原位表征技术研究应变形成动力学,建立更精确的应变-性能关系模型,研究应变场对离子迁移能垒的影响机制。
3.器件优化方向
结合界面工程和能带调控,进一步提升器件效率,开发大面积器件的制备工艺,推动产业化应用。研究在叠层电池中的应用潜力,充分利用其宽光谱响应特性。




原文链接:https://doi.org/10.1002/adma.202508842
索比光伏网 https://news.solarbe.com/202508/18/50006341.html

