混合有机-无机卤化物钙钛矿由于具有高吸收系数、高功率转换效率等特点,可以用来制造轻质、超薄和柔性太阳能电池,解决从地面到太空的各种应用的能源自主问题,使设备可在远程和不可预测的环境中连续和无监督运行。然而稳定性问题阻碍了钙钛矿太阳能电池(PSC)的商业化应用,此外在追求超轻量化和柔性PSC时,超薄基板的高水分和氧气透过率会导致稳定性下降。
奥地利约翰开普勒大学Martin Kaltenbrunner研究团队将高稳定性的二维钙钛矿和高功率转换效率的三维钙钛矿相结合,制备了一种准二维PSC,同时具有高稳定性、高功率密度和超轻薄的特性。通过纳米非晶氧化铝保护涂层的引入改善了气体和水蒸气阻隔性能,且不影响衬底的光学性能。最终制备的PSC平均重量约为4.5±0.2 g·m−2,功率转换效率高达20.1%,功率密度为44 W·g−1(平均18.1%和41 W·g−1)。在连续工作1000小时后,太阳能电池的功率转换效率保持在97%以上。将PSC反复压缩-松弛100次循环后,PCE保持在99%以上。研究人员首先将甲基苄基铵(MBA)引入准二维卤化铅PSC的光活性层中,以MBA2(Cs0.12MA0.88)6Pb7I22的结构作为钙钛矿薄膜中的大块有机阳离子添加剂,以钝化缺陷并降低陷阱密度。并通过不同的阳离子添加剂制作了不同的PSC作为对比,扫描电镜与涂层玻璃衬底上薄膜的X射线衍射图分析表明,MBA的加入增加了晶粒尺寸,改善了整体膜质量,铯的掺入导致立方相形成、晶体应变和优先晶格平面变化,进一步增强了这一点。研究者对不同PSC的时间分辨光致发光衰减曲线、电致发光量子效率(ELQE)以及强度调制光电压谱(IMVS)测量发现,MBA2(Cs0.12MA0.88)6Pb7I22基太阳能电池表现出最高的开路电压以及使用寿命。随后通过一系列环境和机械耐久性测试来检查PSC的稳定性,结果发现MBA2(Cs0.12MA0.88)6Pb7I22可以有效地阻止钙钛矿晶格中的有机阳离子解离以及挥发性离子升华,进而表现出优异的光热稳定性,在连续工作1000小时后,电池的功率转换效率仍能保持97%以上。之后在基底上应用了100纳米厚的非晶AlOx层,以阻挡大气中的氧气和水分,进一步提升了电池的稳定性。通过以上方法制备的柔性PSC比传统刚性太阳能电池薄900倍,并且经过100次压缩、拉伸循环后仍能保持99%以上的初始光伏性能。最终研究人员建立了一个24平方厘米的准二维超轻型PSC基轻型能量收集模块,该模块可为微型无人机提供动力,能够提供约250兆瓦的能量,并且质量仅为无人机总质量的1/400。
图1 混合动力太阳能四旋翼飞行器的设计与特性分析
该研究报道了一种超轻薄的准二维钙钛矿太阳能电池,该器件可直接在超薄、高阻隔的非晶铝涂层聚合物衬底上制造,从而用于能源自主无人机。该PSC以α-甲基苄基碘化铵(MBAI)作为关键的大型有机阳离子添加剂,具有出色的开路电压,功率转换效率高达20.1%,功率密度为44 W·g−1(平均18.1%和41 W·g−1),并且具有优异的环境稳定性和机械弹性。进一步使用24个单独的超轻型PSC组装成超轻型能量收集模块,并用于无人机,使得四轴飞行器在飞行-充电-飞行循环中实现能量自主操作,无需有线充电即可延长飞行时间。该研究制备的太阳能电池将直接有利于执行监视、侦察、搜索和救援、大规模测绘、空间太阳能发电或太阳系探索等任务的自主系统的运行。相关研究成果发表于《Nature Energy》。
责任编辑:周末