HJT与TOPCon的较量,为何钙钛矿叠加成为光伏技术新宠?

来源:光伏网整理发布时间:2024-04-19 16:12:29

在光伏技术的快速发展中,HJT(异质结)技术和TOPCon(钝化氧化接触)技术一直是业界关注的焦点。随着钙钛矿材料的引入,HJT叠加钙钛矿的组合正逐渐展现出其独特的优势,成为光伏领域的一大热点。本文将深入探讨HJT叠加钙钛矿相比TOPCon技术的优势所在,以及这一组合如何引领光伏技术的未来。

一、HJT技术简介

HJT技术以其高效的光电转换效率和良好的低光性能而受到推崇。HJT电池通过在晶体硅基底上叠加非晶硅薄膜形成异质结,有效降低了表面复合,提高了电池的开路电压和短路电流。

二、TOPCon技术的挑战

TOPCon技术通过在电池表面制备一层氧化层和多晶硅层,实现表面钝化,从而减少载流子的复合损失。然而,TOPCon电池在实现更高效率方面面临诸多挑战,包括工艺复杂性、成本控制以及进一步提升效率的难度。

三、钙钛矿材料的介入

钙钛矿材料因其高吸光系数、可调带隙和溶液加工特性,被认为是提升光伏电池效率的理想材料。将钙钛矿与HJT技术结合,不仅能够利用HJT的高效特性,还能通过钙钛矿的宽光谱吸收特性,进一步提高电池的光电转换效率。

四、HJT叠加钙钛矿的优势

1,光电转换效率:HJT独占鳌头

钙钛矿的叠加使用显著提高了HJT电池的光谱响应范围,增加了光生载流子的数量。HJT电池作为非晶硅薄膜异质结电池的代表,其光电转换效率高达27.5%的理论极限,远超传统光伏技术。HJT电池采用本征非晶层异质结技术,将非晶硅层和晶体硅层交替排列,形成高效的异质结结构。这种结构能够充分吸收太阳光谱中的光子,将光能转化为电能的效率大大提升。

2,稳定性:HJT更胜一筹

HJT电池作为非晶硅薄膜异质结电池的代表,其光电转换效率高达27.5%的理论极限,远超传统光伏技术。HJT电池采用本征非晶层异质结技术,将非晶硅层和晶体硅层交替排列,形成高效的异质结结构。这种结构能够充分吸收太阳光谱中的光子,将光能转化为电能的效率大大提升。相比之下,TOPCon叠加钙钛矿虽然制造成本较低,但其光电转换效率却难以与HJT相提并论。

3,制造工艺:HJT简化流程降低成本

钙钛矿材料的溶液加工特性意味着更低的制造成本,这对于降低光伏发电的平准化成本至关重要。在制造工艺方面,HJT电池展现出了其独特的优势。HJT电池采用低温化学气相沉积法,将非晶硅层沉积在衬底上,然后沉积TCO导电膜和P型或N型非晶硅层。这种工艺不仅简化了制造流程,降低了生产成本,还有助于提高产品的良品率。相比之下,TOPCon电池的制造工艺相对复杂,需要采用高温退火工艺,不仅增加了生产成本,还可能导致产品质量的波动。

4,环境友好:材料加工更加环境友好

钙钛矿材料在加工过程中确实不使用高毒性或稀有元素,这使得它相较于其他光伏材料在环境友好性方面具有显著优势。

首先,钙钛矿材料的制造过程避开了高毒性元素的使用。在一些光伏材料的生产过程中,可能会涉及到铅、镉等有毒元素的使用,这些元素对环境和人体健康具有潜在风险。然而,钙钛矿材料在制备过程中并不包含这些有毒元素,从而降低了对环境和人体的危害。

其次,钙钛矿材料并不依赖稀有元素的供应。稀有元素在地球上的储量有限,且开采和提炼过程可能对环境造成破坏。相比之下,钙钛矿材料所使用的原料相对丰富,不涉及稀有元素的开采和使用,这有助于减少资源消耗和环境破坏。

此外,钙钛矿材料的加工过程相对简单,且能源消耗较低。这有助于降低制造过程中的碳排放和环境污染。

索比光伏网 https://news.solarbe.com/202404/19/377605.html

责任编辑:xulilin
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
钙钛矿电池可申报!关于开展第15批 《上海市创新产品推荐目录》编制申报工作的通知来源:钙钛矿工厂 发布时间:2025-12-08 09:45:21

在“双碳”战略引领下,我国光伏技术创新再迎里程碑进展。近日,南京大学谭海仁教授课题组联合仁烁光能产业化团队,在清洁能源关键核心技术研发中取得重大突破。其研制的平米级商业化钙钛矿光伏组件,不仅实现了绿色环保制备,更在转换效率与产品可靠性方面双双达到世界领先水平。

无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。

科学家研发自修复封装材料,阻铅超99%!为钙钛矿光伏技术的可靠性提供了关键解决方案来源:钙钛矿材料和器件 发布时间:2025-12-05 14:36:42

钙钛矿太阳能电池凭借其高光电转换效率与低制造成本,正成为下一代光伏技术商业化进程中的领跑者。因此,亟需开发一种能够快速响应损伤、具备高效自修复能力与主动铅捕获功能的新型封装材料,这已成为推动钙钛矿光伏技术实现安全、可持续商业化所必须突破的关键瓶颈。

离子液体提高钙钛矿太阳能电池的长期稳定性来源:钙钛矿材料和器件 发布时间:2025-12-05 14:34:30

尽管单结钙钛矿太阳能电池的光电转换效率已突破27%,其商业化进程仍受限于长期运行稳定性的瓶颈。然而,即便在隔绝水与氧等外界应力的条件下,钙钛矿太阳能电池的寿命仍显著短于硅基器件。研究组设计并开发了一系列含乙二醇醚侧链的离子液体,以协同提升钙钛矿太阳能电池的效率与稳定性。该离子液体优先富集于钙钛矿底部,可显著抑制碘化铅的聚集及空隙的形成。

高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。

弗劳恩霍夫ISE基于行业标准底TOPCon电池实现与钙钛矿叠层30.6%的效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:17:45

弗劳恩霍夫ISE的研究人员开发了一种采用TOPCon底电池、标准纹理前表面的钙钛矿-硅串联太阳能电池。他们的结果表明,TOPCon底部电池在分流电阻率方面可与串联器件中的异质结电池相当,支持可扩展且具成本效益的工业生产。“证明TOPCon2电池设计及其精益工艺流与钙钛矿/硅叠层集成兼容,标志着实现工业叠层太阳能电池生产的成本效益高峰。”弗劳恩霍夫ISE的其他研究人员最近首次将所谓的掩膜板前金属化方法应用于叠层太阳能电池的开发。

Joule:钙钛矿太阳能电池的回收利用来源:知光谷 发布时间:2025-12-05 09:52:48

钙钛矿太阳能电池实现了高效率和低成本制造,但面临着铅管理和有限使用寿命的挑战。近日,香港科技大学ZhouYuanyuan、香港浸会大学GuoMeiyu等人回顾了能够有效回收PSC的材料、设备和工艺特性。研究亮点:1)作者总结了技术经济分析和生命周期评估,这些分析和评估表明,通过多轮材料回收,成本和环境影响大幅降低,并比较了器件架构和功能层的回收途径。

郑州大学张懿强AM:双模式分子调控钙钛矿结晶,实现高效稳定的FAPbI₃太阳能电池与组件来源:知光谷 发布时间:2025-12-04 10:34:21

本研究引入二苯基碳酸酯作为双功能分子调控剂,可同时调控FAPbI薄膜的成核与生长过程。这种协同调控机制获得了均匀、大晶粒的钙钛矿薄膜,并显著降低了缺陷密度。因此,基于DPC的钙钛矿太阳能电池实现了26.61%的冠军效率,优于对照组器件。

兰州大学曹靖团队AM:卟啉分子“双面锚定”+“强偶极”界面策略实现钙钛矿电池高效与稳定来源:先进光伏 发布时间:2025-12-03 17:07:53

兰州大学曹婧团队设计了一种可溶液加工的四磺化卟啉中间层,其具备强偶极矩和多重配位点,可通过简单的水基后处理垂直锚定在SnO/钙钛矿界面。磺酸基团的强吸电子特性赋予该卟啉分子显著的固有偶极矩,极大促进了电子从钙钛矿向SnO的快速、高效提取与传输。UPS测试进一步证实,修饰后SnO电子传输层的导带与钙钛矿薄膜的导带匹配更为有利。

华晟新能源出席第八届国际异质结大会,分享HJT前沿进展与产业化洞见来源:华晟新能源 发布时间:2025-12-03 13:41:20

华晟新能源首席科学家王文静博士应邀出席,发表主题演讲并参与高端对话,向世界展示了华晟在异质结技术领域的深厚积淀与前瞻布局。他系统性地展示了华晟在HJT电池研发与大规模量产中取得的里程碑式成果。

周二军&于润楠&谭占鳌Nat Commun:通过晶界缓冲调控拉伸应变实现柔性钙钛矿太阳能电池的高效稳定来源:知光谷 发布时间:2025-12-03 09:24:30

本研究嘉兴学院周二军、北京化工大学于润楠和谭占鳌等人通过引入金属螯合物,调控钙钛矿薄膜的纳米力学性能。该策略不仅聚焦于薄膜的纳米力学特性,还揭示了其物理性能与机械柔韧性之间的内在联系。纳米力学-光电性能协同调控:系统阐明了金属螯合物通过静电作用与氢键调控薄膜模量与应变,同步提升载流子寿命与器件稳定性,为柔性光电器件设计提供新思路。