单晶单面和双面PERC电池:结构、性能与生产工艺深度解析

来源:光伏网整理发布时间:2023-08-17 21:15:33

单晶单面和双面钝化接触(PERC)电池是当前光伏行业研究的热点。两者在结构、性能和生产工艺上存在显著的差异。单晶单面PERC电池具有较低的光衰减,而双面PERC电池则具有更高的光电转换效率。本文将从专业角度对两者进行深度分析。

单晶单面和双面PERC电池结构与性能

单晶单面PERC电池的结构与常规的单晶硅电池相似,只是在背面使用激光切割技术形成多个斜面,以减少光衰减。这种结构使得电池具有较低的光衰减,提高了光电转换的稳定性。

双面PERC电池的结构则更为复杂。它在正反两面都进行了钝化处理,并且使用扩散技术形成多个PN结。这种结构使得电池具有较高的光电转换效率,因为正反两面的光生载流子都能够有效地参与光电转换。此外,双面PERC电池的背面也能吸收一部分光线,从而提高了总的光电转换量。

单晶单面和双面PERC电池生产工艺

单晶单面PERC电池的生产工艺相对简单,主要步骤包括单晶生长、切片、研磨、抛光、扩散和金属化等。其中,激光切割是实现PERC电池的关键步骤,要求激光器具有高精度、高稳定性和高重复性。

双面PERC电池的生产工艺则更为复杂,除了与单面PERC电池相同的步骤外,还需要在背面进行钝化处理和扩散。其中,背面钝化处理是实现双面PERC电池的关键步骤,要求材料具有良好的光学性能和电学性能。

单晶单面和双面PERC电池技术挑战

单晶单面PERC电池的主要技术挑战在于如何减小光衰减,提高稳定性。光衰减是由于光生载流子在传输过程中受到缺陷、杂质等影响而产生的。减小光衰减的途径包括提高材料质量、优化工艺条件、改善结构设计等。

双面PERC电池的主要技术挑战在于如何提高双面钝化效果,降低成本。双面钝化需要使用两层钝化材料,并且要求两层材料具有良好的结合性和稳定性。此外,双面PERC电池的正反两面都需要进行金属化,增加了生产成本。降低成本的方法包括优化工艺条件、简化生产流程、提高设备效率等。

单晶单面和双面PERC电池优点

单晶单面和双面PERC电池各自具有独特的优点和挑战。单晶单面PERC电池具有较低的光衰减,适合用于需要长时间稳定运行的应用场景。双面PERC电池具有更高的光电转换效率,适合用于需要最大化光电转换的应用场景。然而,两者都需要进一步的技术研究和生产工艺优化,以实现更高效、更稳定、更低成本的光电转换。

综上所述,单晶单面和双面PERC电池在结构、性能和生产工艺上存在显著的差异。在选择使用哪种类型的电池时,需要考虑应用场景、技术要求和成本预算等因素。进一步的技术研究和生产工艺优化将有助于推动PERC电池的发展和应用。



索比光伏网 https://news.solarbe.com/202308/17/370990.html
责任编辑:zhanhy
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
大阪大学Akinori Saeki团队Angew:手性双面非富勒烯受体实现自旋选择性,推动有机太阳能电池性能突破来源:先进光伏 发布时间:2025-12-13 00:29:01

不对称分子设计是提升非富勒烯受体(NFA)性能的有效策略之一,但以往研究多集中于横向(左右)不对称性。大阪大学Akinori Saeki团队创新性地提出了双面不对称(bifacial)的手性分子设计策略,合成并研究了基于茚并二噻吩(IDT)核心的手性NFA分子:(S,S)-IE4F与(R,R)-IE4F。该设计不仅在垂直方向引入偶极矩,还赋予分子手性,首次在有机太阳能电池(OSC)的体异质结中实现了显著的手性诱导自旋选择性(CISS)效应(自旋极化率高达~70%)。基于纯手性分子构筑的OSC器件取得了8.17%的光电转换效率,是其非手性异构体(meso-IE4F,效率2.36%)的三倍以上。该研究以“Chiral Bifacial Non-Fullerene Acceptors with Chirality-Induced Spin Selectivity: A Homochiral Strategy to Improve Organic Solar Cell Performance”为题发表在《Angewandte Chemie International Edition》。

青岛大学张安东、路皓、欧阳丹和北京师范大学薄志山等人JACS :通过协同偶极叠加实现太阳能电池阴极修饰、欧姆接触与缺陷钝化来源:先进光伏 发布时间:2025-12-10 09:49:47

光学带隙测试结果表明,Rh-Py的带隙为2.63eV,其他CILs则分别为2.91eV、2.84eV和3.06eV。进一步实验表明,Rh-Py由于其强分子内偶极矩,能够显著调节银电极的功函数,而其他CILs如TZD-Py、Rh-Th和Rh-Ph则显示出较小的调节作用。这项研究将Rh-Py作为反溶剂添加剂应用于钙钛矿太阳能电池,以实现界面缺陷钝化和能级调节。

AEM:原位双区域选择性锚定两性离子凝胶实现高效且机械耐用的柔性钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-10 09:46:24

在室内光照条件下,VIPS修饰的柔性器件效率超过40%。

Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。

JACS:π-共轭偶极结构:通过协同偶极叠加实现太阳能电池阴极修饰、欧姆接触与缺陷钝化来源:知光谷 发布时间:2025-12-09 13:45:40

通过协同利用分子内偶极与锚定基团-金属电极间形成的偶极,Rh-Py可显著增强界面偶极矩,不仅有效强化内建电场,还优化了有机太阳能电池的欧姆接触,使其能量转换效率突破20%。此外,Rh-Py与Pb之间的强相互作用可有效钝化钙钛矿薄膜中的Pb缺陷。

兰州大学曹靖团队AM:卟啉分子“双面锚定”+“强偶极”界面策略实现钙钛矿电池高效与稳定来源:先进光伏 发布时间:2025-12-03 17:07:53

兰州大学曹婧团队设计了一种可溶液加工的四磺化卟啉中间层,其具备强偶极矩和多重配位点,可通过简单的水基后处理垂直锚定在SnO/钙钛矿界面。磺酸基团的强吸电子特性赋予该卟啉分子显著的固有偶极矩,极大促进了电子从钙钛矿向SnO的快速、高效提取与传输。UPS测试进一步证实,修饰后SnO电子传输层的导带与钙钛矿薄膜的导带匹配更为有利。

浙大陈红征最新AM:主链衍生固态添加剂精准调控形貌,二元有机太阳能电池效率破20%并兼具厚膜兼容性来源:先进光伏 发布时间:2025-12-02 14:25:38

论文概览活性层形貌的精确调控是推动有机太阳能电池走向实际应用的关键。结论展望本研究提出了一种基于主链衍生结晶模板的通用形貌调控策略,通过设计小分子BDD-C6与DTBT-C6,成功实现活性层垂直相分布、结晶性与相纯度的协同优化,显著提升激子利用与电荷传输效率,最终在多个二元体系中实现20%以上的高效率并具备优异厚膜兼容性。该策略为高性能、可规模化制备的有机太阳能电池提供了新的材料设计与形貌工程思路。

工信部召开动力和储能电池行业制造业企业座谈会,天合储能作为行业代表参加座谈会来源:天合光能 发布时间:2025-12-01 09:04:21

11月28日,工业和信息化部组织召开动力和储能电池行业制造业企业座谈会。天合光能作为光伏行业唯一的受邀企业,其子公司天合储能参加此次储能行业的座谈会。杨豹表示,在中央全力整治内卷式竞争的关键时点,天合光能受邀参加工信部动力和储能电池行业企业座谈会并参与交流,充分彰显党和国家对储能产业高质量发展的高度重视,也是对天合光能通过光储协同推动储能产业发展的高度认可。

英利发展参加SEMI秋季会议 于波博士成功当选电池和BIPV工作组组长来源:英利发展 发布时间:2025-11-28 11:11:32

11月26日,SEMI中国光伏标准技术委员会2025年度秋季会议在无锡隆重召开。在此背景下,英利发展副总裁、国家技术标准创新基地(光伏)主任于波博士凭借在晶体硅太阳电池技术研发、光伏建筑一体化应用实践及行业标准制定领域的深厚积淀与卓越贡献,在本次会议上成功当选SEMI中国光伏标委会晶体硅太阳电池工作组和光伏建筑一体化工作组组长。

南航赵晓明AEM:调控配体吸电子效应设计配体反应性以实现户外稳定的钙钛矿太阳能电池与组件来源:知光谷 发布时间:2025-11-27 13:47:25

2D/3D钙钛矿异质结构提升了钙钛矿太阳能电池的性能。本文南京航空航天大学赵晓明等人研究了芳香铵配体的吸电子强度对钙钛矿界面稳定性的影响。此外,组件在30天户外运行中保持稳定的功率输出,显示出其在实际应用中的潜力。研究亮点:配体吸电子能力调控界面稳定性:通过杂环中氧原子数量的增加,系统调控芳香铵配体的吸电子能力,最强吸电子配体ABDI有效抑制2D相形成并阻止离子互扩散。

武汉大学方国家Nature Conmmunications:氧化钇工程衬底提高了钙钛矿型太阳能电池的耐用性来源:矿物薄膜太阳能电池 发布时间:2025-11-26 09:00:11

首次明确指出并证实了“惰性”的FTO基底在操作应力下会发生离子扩散,是导致钙钛矿太阳能电池性能衰减的关键但被长期忽视的退化途径。CPD下降表明样品的功函数增加了,功函数增加通常意味着费米能级向下移动更靠近价带。图4.c为碘的信号从钙钛矿层向下方的SnO2和FTO层中渗透。