南开大学创下有机太阳能转换效率17.3%的新纪录

来源:电子工程专辑发布时间:2018-10-11 13:44:56

有机太阳能电池转换效率的进步速度,可说是一日千里,4 月份才有科学家突破 15% 的纪录,近日中国南开大学团队更是将效率提升至 17.3%,还表示突破到 20% 以上并非不可能。

硅晶太阳能为目前最常见的成本效益比最高的太阳光电技术,商业化转换率达 15%~22%,更有 20~25 年的可用寿命,只是由于其转换效率预期难以再突破,因此科学家一直在寻找其他更高效率、低成本与无毒太阳光电技术。

其中,有机太阳能制作材料部分或全部为有机物,可溶解于油墨中、再用喷涂或是印刷制造,电池成本有望比一般硅晶太阳能电池还要低,具有可大量制造、价格低廉、材地柔软可挠曲等特性,未来甚至可结合到衣服、窗户或是汽车上。

但与此同时,它们也存有转换效率低与稳定性不高等问题,因此目前尚未达到商业化。不过,近期有机太阳能转换效率有所进展,以往效率仅停留在 11%~12% 左右,而美国密歇根大学的科研团队 4 月已开发出转换效率达 15% 的有机太阳能电池,使用寿命更可达 20 年,可说是相当大的突破。

根据估计,假如有机太阳能转换效率达 15%,并拥有 20 年的可用寿命,每度电仅 7 美分,美国平均电价则为每度电 10.5 美分,显示有机太阳能的成本优势相当大。

而近日,中国南开大学化学学院陈永胜教授领衔的团队更带来转换效率高达 17.3% 的有机太阳能,并指出“材料分子结构松散”为有机太阳能电池转换效率不高的原因之一,认为电子移动率低会限制活性层的厚度,无法有效利用太阳光。


有机太阳能电池的柔性特征和本工作主要结果(图:南开新闻网)

于是,南开大学团队决定用透过串联方式,将两种不同的有机材料层结合在一起。纳米科学与技术研究中心主任陈永胜表示,串联型有机太阳能电池不仅可以克服上述难题,还可以充分发挥有机材料的特性,两种不同的材料更代表着太阳能电池可吸收不同波段的光,能有效地利用太阳光,最终产生更多电流。


科学家透过不同材料让光吸收范围相互互补,像是前侧材料可吸收 300~720 纳米波长的光,另一材料则负责 720~1,000 纳米。就好比现在也有团队将硅晶结合钙钛矿太阳能,让钙钛矿负责将绿光、蓝光转换为电能,硅则负责红光、近红外光。


“依据我们提出的半经验模型预测,有机太阳能电池(垫层)的最高转化效率理论上可以达到20%以上。本次工作中,我们同时也对电池的寿命进行了初步试验,发现166天实验后电池效率仅降低4%。未来,我们将继续设计新的材料,在进一步提高能量转化效率的同时,针对电池寿命问题进行系统的实验,争取让有机太阳能电池早日从实验室走向实际应用。”陈永胜说。

团队也相当看好有机太阳能的发展与应用,认为该技术距离商业化不远,陈永胜博士甚至将有机太阳能与 OLED 相比较,并表示 OLED 所使用的材料与有机太阳能差不多,其物理原理也是一样的,只是不同方向而已:一个是将太阳能转换成电力,OLED 则是将电转换成光。


目前 OLED 已经达成商业化,也被广泛用于手机与高阶电视,因此陈永胜认为有机太阳能或许可在五年达成商业化。该研究已发表在《Science》。


索比光伏网 https://news.solarbe.com/201810/11/296960.html
责任编辑:suna
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
美媒:犹他州领导人正在密切关注太阳能开发工作,目标是将该州的能源供应增加一倍来源:SOLARZOOM光储一家 发布时间:2025-12-26 16:01:03

Operation Gigawatt:长臂行动:犹他州州长斯宾塞·考克斯去年宣布,该州将利用“上述任何一种”方式在未来十年内将能源产量翻倍。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

目前最高值!AFM:双重钝化策略使钙钛矿电池太阳能-氢能转换效率达6.5%来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:13:06

FASCN促进钙钛矿晶粒长大,PDAI减少表面缺陷,共同抑制非辐射复合并提升电荷提取效率。进一步通过三元富勒烯混合物优化电子传输层,改善能级对齐并降低界面能量损失,使小面积器件的开路电压从1.41V提升至1.60V,能量转换效率达9.4%。该系统太阳能-氢能转换效率达6.5%,是目前报道的单吸收体PV-EC系统中最高值。单吸收体水分解效率创纪录:将优化后的1.0cm器件集成于PV-EC系统,实现6.5%的太阳能-氢能转换效率,为目前单吸收体光解水系统最高值。

马斯克:计划每年部署100GW的太阳能AI卫星来源:SOLARZOOM光储一家 发布时间:2025-12-23 11:31:57

12月15日,特斯拉CEO埃隆·马斯克在社交平台“X”公开发声,明确表达对地球小型核电反应堆的否定态度,直言相关建造“简直愚蠢至极”。与此同时,他再次力推其太空太阳能AI设想,称太阳作为“天空中巨大的免费核聚变反应堆”,足以满足整个太阳系能源需求,地球上的小型核聚变反应堆本质是经济浪费。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。

西安交通大学马伟团队Angew:香豆素基挥发/非挥发性固体添加剂协同作用,助力有机太阳能电池效率突破20.3%!来源:先进光伏 发布时间:2025-12-22 16:27:12

针对这一挑战,湘潭大学、西安交通大学、西安科技大学等多个团队合作设计并合成了两种具有相似骨架的香豆素衍生物固体添加剂:挥发性C5与非挥性C6。结论展望本研究通过精准设计一对结构相似但挥发性迥异的香豆素衍生物添加剂,首次系统比较并揭示了挥发性与非挥发性固体添加剂在有机太阳能电池中的作用机制差异。

四川大学彭强团队NC:溶剂蒸汽扩散驱动多尺度预聚集策略,助力有机太阳能电池突破20.7%效率!来源:先进光伏 发布时间:2025-12-22 16:25:04

论文概览精确调控活性层形貌是提升有机太阳能电池效率的关键,但其复杂性使得实现可重复的最优结构极具挑战。针对此难题,四川大学彭强、徐晓鹏团队创新性地开发了一种溶剂蒸汽扩散策略。实现效率突破:将单结有机太阳能电池效率推升至20.7%以上,跻身世界最高效率行列。结论展望本研究成功开发并验证了一种基于溶剂蒸汽扩散的、用于精确调控非富勒烯受体多尺度预聚集的通用策略。

紫色光/紫外光线诱导的卤化物钙钛矿太阳能电池钝化失效来源:钙钛矿材料和器件 发布时间:2025-12-22 13:50:34

胺基末端配体,无论是直接使用还是以二维钙钛矿的形式使用,都是钙钛矿钙化剂中的主要缺陷钝化剂,并且显著推动了各种钙钛矿太阳能电池达到最高效率。然而,即便是这些最先进的钙钛矿太阳能电池,在运行过程中仍会迅速降解,这引发了对钝化耐久性的担忧。总之,研究结果揭示了一种普遍机制,即紫色光/紫外光线会导致胺基端配体的去钝化,而这类配体是钙钛矿太阳能电池的主要缺陷钝化剂。

抑制PEDOT:PSS相分离以提升柔性全钙钛矿叠层太阳能电池效率来源:钙钛矿材料和器件 发布时间:2025-12-22 13:45:15

Empa、四川大学、国立清华大学、FluximAG、苏黎世联邦理工学院和斯洛伐克科学院的研究人员证明,超薄PEDOT:PSS中的垂直相分离会产生界面偶极,限制柔性钙钛矿叠层电池性能,而将曲拉通加入PEDOT:PSS可抑制这些偶极子并提升器件效率。柔性全钙钛矿叠层太阳能电池和微型模块。本研究不仅揭示了PEDOT:PSS中界面偶极子作为钙钛矿叠层中的隐藏损耗机制,还提供了一种可扩展的克服方法。

固态钙钛矿太阳能电池的发现与进展来源:钙钛矿材料和器件 发布时间:2025-12-22 13:39:11

2012年,我们首次报道了长期稳定的固态钙钛矿太阳能电池,开辟了一个新领域,并引发了认证功率转换效率超过27.3%,超越了单晶硅太阳能电池的效率。如今,随着钙钛矿/硅叠层器件效率接近35%,钙钛矿太阳能电池已成为满足2050年净零碳排放目标所需太瓦级需求的主要候选者。展望未来,钙钛矿太阳能电池已准备好进入市场,预计钙钛矿/硅叠层器件将首先出现,随后是高效单结器件。固态钙钛矿太阳能电池的发现钙钛矿是具有ABX3通式的化合物。