基于数据分析的钝化层钝化效果分析

来源:太阳能杂志发布时间:2018-07-26 15:05:07

太阳电池的钝化层直接影响太阳电池的性能,钝化层界面上固定电荷密度和缺陷密度是分析其钝化效果的关键参数。本文通过建立MOS模型来模拟钝化层的电容-电压(C-V)特性曲线,并使用函数表达模拟曲线,建立基于函数的数据库,将实验获取的C-V 曲线与数据库进行比对找出实验数据对应函数,提取出钝化参数Nf和Dit,并以此分析钝化层的钝化效果。

MOS模型建立

为了更好地研究晶体硅钝化层的钝化性能,本文建立了一个金属氧化物模型来提取出氧化物和硅界面处的固定电荷密度Nf 和缺陷密度Dit,而这两个因素则通过C-V 特性测试图体现出来。先是输入原始界面态的Nf 和Dit 数值、C-V 测试结果、氧化物与硅的参数,设定门极电压VG 的原始值, 计算出此时的界面电势ψS ;接着计算硅表面电容CS 和总电容C,由此来比较模型和实验的C-V 特性图的相关性,若相关性不好就改变门极电压VG、Nf 和Dit,直至相关性符合要求;然后输出此时的Nf 和Dit;具体流程如图1 所示[3-5]。


界面电势ψS 的计算公式为:QG(ψS)+Qf +Qit(ψS)+QSi(acc)(ψS)=0 (1)式中, QG 为门极电荷; Qf 为氧化层固定电荷; Qit 为氧化物和硅界面处固定电荷; QSi(acc) 为标准条件下的硅层固定电荷。

根据文献[6]和[7],能够得到使用Si/SiO2 界面态钝化的原始实验数据, 在这里得到界面上的缺陷密度分布; 通过图1 的算法流程可以得出Dit 的算法公式,如式(2)所示,这个公式能够将缺陷密度离散分布数据进行拟合形成一个曲线。


式中, K 为平衡常数,一般取1; E 为电池能级; Ev、Ec 分别为电池能级上下能级界限; Eg为电池能级带宽, Eg =Ec -Ev;Eit 为晶体硅能级;Dit,m 为能级划分处的缺陷密度; D0v、D0c 分别为Ev、Ec 能级下的缺陷密度。

关于建立模型模拟电池的C-V 特性曲线,则需要进一步计算其他变量,最终整合成关于Nf 和Dit 的函数。首先,电池MOS 结构的总电容C 可以通过式(3)来计算[8]:

式中, COX 为电介质上单位面积电容量。COX 可用式(4)求出:

式中, dOX 为电介质的厚度; tOX 为Al2O3 氧化层厚度;A 为MOS 层的面积; Cacc 为标准条件下的测试电容; εOX 为电介质单位面积上的介质常数。另外,CS 在高频C-V 特性图上获取,其计算公式为:


式中, QS(majority,dopant) 为半导体硅表面掺杂物和多数载流子的电荷密度; εSi 和ε0 分别为硅和电介质的电容率; k 为玻尔兹曼常数; T 为热力学温度; q 为单位电荷的电量; ND 为掺杂剂电离子浓度; n1 为掺杂后晶体硅内自由电子密度。MOS 结构的电荷分布情况如图2 所示。


在文献[7]和[9]内可以找到求取ψS 的公式,通过式(6)~式(14)来算出。



式中, ns 和ps 代表n 型和p 型结构下硅表面自由电荷的载流子密度;σn 为表面处缺陷态对电子的俘获界面;σp 为表面处缺陷态对空穴的俘获界面; p1 为掺杂后晶体硅内空穴密度;ni 为半导体本征载流子浓度;Esi 为硅层电场强度; df 为氧化层厚度; fa(E)、fd(E)分别为受主型、施主型界面复合概率;Dit,a 和Dit,d 分别为受主型和施主型界面缺陷密度;Ei、Et 分别为能级中点和目标能级; QSi 为半导体硅表面电荷密度。

QSi 的正负由门极电压VG 和平带电压VFB 决定,当VG ≥VFB 时, QSi 为负;若VG ≤VFB , QSi为正。平带电压VFB 可由式(15)计算:


式中, ΦMS 为MOS 结构中的金属有效功函数,不同于金属电子亲和性和半导体费米能级;dox 为电介质厚度;dit 为电介质与硅接触面电荷厚度。


图3 为最后的模型效果,其中黑线为建立的MOS 模型对该实验数据的拟合曲线,由此来观察拟合效果是否符合要求。


大数据算法

大数据库的建立基于上文所搭建模型,在对现场太阳电池的钝化性能进行分析时,主要是计算它的固定电荷密度Nf 及界面缺陷密度Dit,通过这两个数据来分析这块电池的钝化效果。先是通过模型建立起能够与之相关性良好的函数来拟合该电池的C-V 特性图,然后改变Nf 和Dit这两个参数,建立起一个关于Nf 和Dit 的函数组,见式(16):


接着在电池C-V 特性上找寻多个关键点,它们的坐标为(x1,y1),(x2,y2),(x3,y3),…,(xi,yi)。将这多个坐标代入到函数组内,如此可得到一组函数数列,见式(17):

 

将所求函数值与坐标值相减,求出每个坐标点的误差值ε,将这些误差值绝对值求和,可得式(18):


其中, εi =fi(N,D) -yi 。

对式(18)进行最小值求值,可得到误差值最小的那个函数 f (N ) i,Di 。这个函数即为目标所求能够和此电池完美拟合的函数曲线,这个函数里的固定电荷密度和界面缺陷密度即为实际电池的参数,这样就能确定该电池的钝化类型及其占比。

结果分析

本文选择使用PECVD 法制作Al2O3 薄膜来作为太阳电池的钝化层。首先是根据实验数据修改固定参数,直至我们所建立的MOS 模型能够完整模拟该电池的C-V 特性曲线;接着保持其他参数不变,改变固定电荷密度和缺陷密度这两个参数,如图3 所示,设定固定电荷密度为2×e16 m2不变,分别赋值Dit 为1×e16~4×e16 m2/V,每次0.2 个误差带入模型公式内即可得出图4 所示的16 条C-V 特性曲线。


图4 中,随着缺陷密度的上升,与之对应的C-V 特性曲线下降速度变小,曲线倾斜度变小,这也意味着,随着缺陷密度的增加,与之对应的曲线成下降趋势。

图5 是确定缺陷密度为2×e16 m2/V 时,更改固定电荷密度,分别赋值为2×e16~3.5×e16 m2,每次0.1 个误差;然后将其带入模型,模拟出图中16 条C-V 特性曲线,这些曲线都可以纳入数据库内作为数据。

图5 中,随着固定电荷的升高,曲线也在向上移动,曲线上升速率也在下降。这意味着,随着固定电荷密度的增加,与之对应的曲线成上升趋势,与缺陷密度的作用正好相反。


图6 为钝化次数分别为40、80、200 的情况下,对电池进行C-V 特性测量得到的实验数据综合图。将图6 与图4、图5 进行比对,观察随着钝化次数的变化,固定电荷密度与缺陷密度这两个参数的变化。


通过比对图4~图6 可发现,随着钝化次数的提高,缺陷密度的数值在下降。这是由于随着钝化次数的提升, 钝化介质的厚度也在上升,介质层内部的缺陷也随之增加,钝化效果也在下降;但是与之对应的是固定电荷密度,它的数值也在随着钝化次数的增加而变大,这样却导致电池钝化效果的提升,所以,固定电荷密度和缺陷密度这两个参数在钝化性能上的占比就能分析钝化效果。

结论

本文通过电池内部各个参数的计算方程搭建出模拟MOS 结构钝化效果的模型,通过模型将钝化层的钝化效果使用曲线表示出来,基于模型建立起钝化曲线库。使用数据分析法将目标电池的钝化曲线与数据库内的曲线进行比较,计算曲线之间的误差值,最小值对应的曲线库内曲线视为目标电池的模拟曲线,将模拟曲线所对应的钝化参数视为实验数据参数,由此来分析钝化层钝化效果。

曲线库内曲线通过两个参数进行分类,通过曲线对比可以知晓钝化次数的变化,在曲线库内影响到钝化参数的变化,实际应用中就可以通过相应的变化趋势对目标电池进行改造使其符合要求。电池的钝化参数实际中还有很多,本文对于其他参数进行了简化,电池厚度这一参数也是做了简化处理,但实际中,不同电池在相同条件下的厚度也是有差异的。因此,若对电池进行延伸钝化分析时,电池钝化层厚度也是一个可以延伸的参考参数。



索比光伏网 https://news.solarbe.com/201807/26/291286.html
责任编辑:suna
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
华东师范大学方俊锋最新Nature Communications:一种不含氟化锡、高效且耐用的锡铅钙钛矿太阳能电池来源:钙钛矿太阳能电池 发布时间:2026-01-14 08:37:34

2026年1月12日华东师范大学Wenxiao Zhang&方俊锋&林雪平大学高峰于Nature Communication刊发一种不含氟化锡、高效且耐用的锡铅钙钛矿太阳能电池的研究成果,开发了一种策略,将铅粉作为前驱体,并进行PbF₂后处理,分别替代SnF₂在成膜和表面缺陷钝化中的作用。Pb²⁺中的d电子极化增强了其与F⁻的结合,使其对钙钛矿的反应惰性。在本研究中,不含SnF₂的器件效率从16.43%提高到24.07%。在最大功率点下,85°C 运行 550 小时后,电池仍能保持其初始效率的60%。

又一钙钛矿合资公司将成立!晶科×晶泰签署AI高通量叠层太阳能电池项目合作协议!来源:钙钛矿工厂 发布时间:2026-01-08 11:25:48

近日,晶科能源宣布,与人工智能+机器人赋能研发创新的平台型企业晶泰科技签署战略合作协议,双方将共同成立合资公司,推进基于AI技术的高通量钙钛矿叠层太阳能电池合作研发。基于双方坚实的技术基础与合作规划,晶科能源预计钙钛矿叠层电池有望在未来三年左右迈向规模化量产。

晶科能源入股!AI高通量叠层太阳能电池项目合作协议签约落地来源:东吴光伏圈 发布时间:2026-01-08 10:47:00

近日,晶科能源与人工智能+机器人赋能研发创新的平台型企业晶泰科技签署战略合作协议,双方将共同成立合资公司,推进基于AI技术的高通量钙钛矿叠层太阳电池合作研发,通过“AI+机器人”重塑光伏研发范式,加速颠覆性技术的研发与产业化进程。

晶科能源与晶泰科技签署AI高通量叠层太阳能电池项目合作协议来源:晶科能源 发布时间:2026-01-08 10:22:16

全球极具创新力的光伏企业晶科能源近日宣布,与人工智能+机器人赋能研发创新的平台型企业晶泰科技签署战略合作协议,双方将共同成立合资公司,推进基于AI技术的高通量钙钛矿叠层太阳能电池合作研发。此举标志着两家在不同技术领域的领军者强强联合,正式开启在钙钛矿叠层等下一代光伏技术领域的深度协同,旨在通过“AI+机器人”重塑光伏研发范式,加速颠覆性技术的研发与产业化进程。

从化学到太阳能电池:材料创新在钙钛矿光伏革命中的核心作用来源:钙钛矿材料和器件 发布时间:2026-01-07 10:33:54

钙钛矿太阳能电池已经成为光伏领域的一项变革性技术。自2009年问世以来,因其卓越的效率、低成本的加工工艺和可调谐的光电特性,十年内已成为下一代光伏技术的主要候选者。然而,长期稳定性、铅毒性和工业可扩展性方面的挑战仍然是其大规模商业化的主要障碍。本文探讨了材料创新在克服这些障碍中的核心作用,重点关注成分工程、分子添加剂与钝化、界面化学以及二维/准二维钙钛矿系统的进展。特别关注了电荷传输架构的演变和新兴的商业前景。我们还强调了从追求性能的研究转向注重耐用性和可制造性策略的重要性。文章最后对未来钙钛矿太阳能电池的发展方向提出了建议,包括标准化测试、预测性材料设计和环境友好型制造的需求。

新加坡团队攻克钙钛矿-硅叠层太阳能电池量产化关键技术来源:钙钛矿材料和器件 发布时间:2026-01-04 14:06:35

新加坡国立大学的科学家们近期宣布,他们成功在工业级绒面硅片上,通过气相沉积工艺制造出了兼具高效率与长期热稳定性的钙钛矿-硅叠层太阳能电池。值得注意的是,今年6月,新加坡太阳能研究所的研究人员曾报告了钙钛矿-有机叠层太阳能电池取得了26.4%的认证效率世界纪录,并在更大测试器件上达到26.7%,创下了该技术至今的最高性能。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

目前最高值!AFM:双重钝化策略使钙钛矿电池太阳能-氢能转换效率达6.5%来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:13:06

FASCN促进钙钛矿晶粒长大,PDAI减少表面缺陷,共同抑制非辐射复合并提升电荷提取效率。进一步通过三元富勒烯混合物优化电子传输层,改善能级对齐并降低界面能量损失,使小面积器件的开路电压从1.41V提升至1.60V,能量转换效率达9.4%。该系统太阳能-氢能转换效率达6.5%,是目前报道的单吸收体PV-EC系统中最高值。单吸收体水分解效率创纪录:将优化后的1.0cm器件集成于PV-EC系统,实现6.5%的太阳能-氢能转换效率,为目前单吸收体光解水系统最高值。

浙江大学王勇 AEL: 离子位点竞争策略用于增强钙硅叠层光伏器件中宽带隙钙钛矿的稳定性来源:先进光伏 发布时间:2025-12-23 11:00:37

论文概览宽带隙钙钛矿的稳定性是实现高效钙钛矿/硅叠层光伏器件的关键,但由于宽带隙钙钛矿中卤化物偏析导致的不稳定性仍然是一个重大挑战。结论展望本研究创新性地提出了一种离子位点竞争策略,通过精心设计的多Cl-源前驱体组分优化,实现了Cl离子在钙钛矿晶格与间隙位点的可控分布。

AFM:双功能电子传输层工程实现能级对齐与界面钝化,打造高效钙钛矿发光二极管来源:知光谷 发布时间:2025-12-23 10:00:54

我们深入研究了BPAH对ETL能级和迁移率的影响,并揭示了其与发光层之间的强相互作用,有效钝化了发光层表面缺陷,促进了电荷传输与辐射复合。研究亮点:一分子双功能:BPAH实现ETL能级调控与界面钝化BPAH分子插入POT2T分子间隙,改善π-π堆叠,提升电子迁移率;其咪唑基团与发光层中未配位Pb配位,增强铅-卤键结合力,有效抑制卤离子迁移与界面缺陷。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。