基于数据分析的钝化层钝化效果分析

来源:太阳能杂志发布时间:2018-07-26 15:05:07

太阳电池的钝化层直接影响太阳电池的性能,钝化层界面上固定电荷密度和缺陷密度是分析其钝化效果的关键参数。本文通过建立MOS模型来模拟钝化层的电容-电压(C-V)特性曲线,并使用函数表达模拟曲线,建立基于函数的数据库,将实验获取的C-V 曲线与数据库进行比对找出实验数据对应函数,提取出钝化参数Nf和Dit,并以此分析钝化层的钝化效果。

MOS模型建立

为了更好地研究晶体硅钝化层的钝化性能,本文建立了一个金属氧化物模型来提取出氧化物和硅界面处的固定电荷密度Nf 和缺陷密度Dit,而这两个因素则通过C-V 特性测试图体现出来。先是输入原始界面态的Nf 和Dit 数值、C-V 测试结果、氧化物与硅的参数,设定门极电压VG 的原始值, 计算出此时的界面电势ψS ;接着计算硅表面电容CS 和总电容C,由此来比较模型和实验的C-V 特性图的相关性,若相关性不好就改变门极电压VG、Nf 和Dit,直至相关性符合要求;然后输出此时的Nf 和Dit;具体流程如图1 所示[3-5]。


界面电势ψS 的计算公式为:QG(ψS)+Qf +Qit(ψS)+QSi(acc)(ψS)=0 (1)式中, QG 为门极电荷; Qf 为氧化层固定电荷; Qit 为氧化物和硅界面处固定电荷; QSi(acc) 为标准条件下的硅层固定电荷。

根据文献[6]和[7],能够得到使用Si/SiO2 界面态钝化的原始实验数据, 在这里得到界面上的缺陷密度分布; 通过图1 的算法流程可以得出Dit 的算法公式,如式(2)所示,这个公式能够将缺陷密度离散分布数据进行拟合形成一个曲线。


式中, K 为平衡常数,一般取1; E 为电池能级; Ev、Ec 分别为电池能级上下能级界限; Eg为电池能级带宽, Eg =Ec -Ev;Eit 为晶体硅能级;Dit,m 为能级划分处的缺陷密度; D0v、D0c 分别为Ev、Ec 能级下的缺陷密度。

关于建立模型模拟电池的C-V 特性曲线,则需要进一步计算其他变量,最终整合成关于Nf 和Dit 的函数。首先,电池MOS 结构的总电容C 可以通过式(3)来计算[8]:

式中, COX 为电介质上单位面积电容量。COX 可用式(4)求出:

式中, dOX 为电介质的厚度; tOX 为Al2O3 氧化层厚度;A 为MOS 层的面积; Cacc 为标准条件下的测试电容; εOX 为电介质单位面积上的介质常数。另外,CS 在高频C-V 特性图上获取,其计算公式为:


式中, QS(majority,dopant) 为半导体硅表面掺杂物和多数载流子的电荷密度; εSi 和ε0 分别为硅和电介质的电容率; k 为玻尔兹曼常数; T 为热力学温度; q 为单位电荷的电量; ND 为掺杂剂电离子浓度; n1 为掺杂后晶体硅内自由电子密度。MOS 结构的电荷分布情况如图2 所示。


在文献[7]和[9]内可以找到求取ψS 的公式,通过式(6)~式(14)来算出。



式中, ns 和ps 代表n 型和p 型结构下硅表面自由电荷的载流子密度;σn 为表面处缺陷态对电子的俘获界面;σp 为表面处缺陷态对空穴的俘获界面; p1 为掺杂后晶体硅内空穴密度;ni 为半导体本征载流子浓度;Esi 为硅层电场强度; df 为氧化层厚度; fa(E)、fd(E)分别为受主型、施主型界面复合概率;Dit,a 和Dit,d 分别为受主型和施主型界面缺陷密度;Ei、Et 分别为能级中点和目标能级; QSi 为半导体硅表面电荷密度。

QSi 的正负由门极电压VG 和平带电压VFB 决定,当VG ≥VFB 时, QSi 为负;若VG ≤VFB , QSi为正。平带电压VFB 可由式(15)计算:


式中, ΦMS 为MOS 结构中的金属有效功函数,不同于金属电子亲和性和半导体费米能级;dox 为电介质厚度;dit 为电介质与硅接触面电荷厚度。


图3 为最后的模型效果,其中黑线为建立的MOS 模型对该实验数据的拟合曲线,由此来观察拟合效果是否符合要求。


大数据算法

大数据库的建立基于上文所搭建模型,在对现场太阳电池的钝化性能进行分析时,主要是计算它的固定电荷密度Nf 及界面缺陷密度Dit,通过这两个数据来分析这块电池的钝化效果。先是通过模型建立起能够与之相关性良好的函数来拟合该电池的C-V 特性图,然后改变Nf 和Dit这两个参数,建立起一个关于Nf 和Dit 的函数组,见式(16):


接着在电池C-V 特性上找寻多个关键点,它们的坐标为(x1,y1),(x2,y2),(x3,y3),…,(xi,yi)。将这多个坐标代入到函数组内,如此可得到一组函数数列,见式(17):

 

将所求函数值与坐标值相减,求出每个坐标点的误差值ε,将这些误差值绝对值求和,可得式(18):


其中, εi =fi(N,D) -yi 。

对式(18)进行最小值求值,可得到误差值最小的那个函数 f (N ) i,Di 。这个函数即为目标所求能够和此电池完美拟合的函数曲线,这个函数里的固定电荷密度和界面缺陷密度即为实际电池的参数,这样就能确定该电池的钝化类型及其占比。

结果分析

本文选择使用PECVD 法制作Al2O3 薄膜来作为太阳电池的钝化层。首先是根据实验数据修改固定参数,直至我们所建立的MOS 模型能够完整模拟该电池的C-V 特性曲线;接着保持其他参数不变,改变固定电荷密度和缺陷密度这两个参数,如图3 所示,设定固定电荷密度为2×e16 m2不变,分别赋值Dit 为1×e16~4×e16 m2/V,每次0.2 个误差带入模型公式内即可得出图4 所示的16 条C-V 特性曲线。


图4 中,随着缺陷密度的上升,与之对应的C-V 特性曲线下降速度变小,曲线倾斜度变小,这也意味着,随着缺陷密度的增加,与之对应的曲线成下降趋势。

图5 是确定缺陷密度为2×e16 m2/V 时,更改固定电荷密度,分别赋值为2×e16~3.5×e16 m2,每次0.1 个误差;然后将其带入模型,模拟出图中16 条C-V 特性曲线,这些曲线都可以纳入数据库内作为数据。

图5 中,随着固定电荷的升高,曲线也在向上移动,曲线上升速率也在下降。这意味着,随着固定电荷密度的增加,与之对应的曲线成上升趋势,与缺陷密度的作用正好相反。


图6 为钝化次数分别为40、80、200 的情况下,对电池进行C-V 特性测量得到的实验数据综合图。将图6 与图4、图5 进行比对,观察随着钝化次数的变化,固定电荷密度与缺陷密度这两个参数的变化。


通过比对图4~图6 可发现,随着钝化次数的提高,缺陷密度的数值在下降。这是由于随着钝化次数的提升, 钝化介质的厚度也在上升,介质层内部的缺陷也随之增加,钝化效果也在下降;但是与之对应的是固定电荷密度,它的数值也在随着钝化次数的增加而变大,这样却导致电池钝化效果的提升,所以,固定电荷密度和缺陷密度这两个参数在钝化性能上的占比就能分析钝化效果。

结论

本文通过电池内部各个参数的计算方程搭建出模拟MOS 结构钝化效果的模型,通过模型将钝化层的钝化效果使用曲线表示出来,基于模型建立起钝化曲线库。使用数据分析法将目标电池的钝化曲线与数据库内的曲线进行比较,计算曲线之间的误差值,最小值对应的曲线库内曲线视为目标电池的模拟曲线,将模拟曲线所对应的钝化参数视为实验数据参数,由此来分析钝化层钝化效果。

曲线库内曲线通过两个参数进行分类,通过曲线对比可以知晓钝化次数的变化,在曲线库内影响到钝化参数的变化,实际应用中就可以通过相应的变化趋势对目标电池进行改造使其符合要求。电池的钝化参数实际中还有很多,本文对于其他参数进行了简化,电池厚度这一参数也是做了简化处理,但实际中,不同电池在相同条件下的厚度也是有差异的。因此,若对电池进行延伸钝化分析时,电池钝化层厚度也是一个可以延伸的参考参数。


索比光伏网 https://news.solarbe.com/201807/26/291286.html

责任编辑:suna
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
KHP钝化埋底界面实现高效稳定钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-05 14:43:00

近日,中国科学院上海高等研究院光源科学中心研究人员成功将邻苯二甲酸氢钾作为多功能添加剂引入SnO2电子传输层,以同步改变ETL性质和SnO2/钙钛矿埋底界面。此外,KHP在ETL中均匀分布,并在热退火过程中逐渐扩散至埋底界面和钙钛矿层,进一步与未配位的Pb离子配位,降低钙钛矿的表面及体相缺陷密度,缓解薄膜内部应力。

无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。

离子液体提高钙钛矿太阳能电池的长期稳定性来源:钙钛矿材料和器件 发布时间:2025-12-05 14:34:30

尽管单结钙钛矿太阳能电池的光电转换效率已突破27%,其商业化进程仍受限于长期运行稳定性的瓶颈。然而,即便在隔绝水与氧等外界应力的条件下,钙钛矿太阳能电池的寿命仍显著短于硅基器件。研究组设计并开发了一系列含乙二醇醚侧链的离子液体,以协同提升钙钛矿太阳能电池的效率与稳定性。该离子液体优先富集于钙钛矿底部,可显著抑制碘化铅的聚集及空隙的形成。

高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。

弗劳恩霍夫ISE基于行业标准底TOPCon电池实现与钙钛矿叠层30.6%的效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:17:45

弗劳恩霍夫ISE的研究人员开发了一种采用TOPCon底电池、标准纹理前表面的钙钛矿-硅串联太阳能电池。他们的结果表明,TOPCon底部电池在分流电阻率方面可与串联器件中的异质结电池相当,支持可扩展且具成本效益的工业生产。“证明TOPCon2电池设计及其精益工艺流与钙钛矿/硅叠层集成兼容,标志着实现工业叠层太阳能电池生产的成本效益高峰。”弗劳恩霍夫ISE的其他研究人员最近首次将所谓的掩膜板前金属化方法应用于叠层太阳能电池的开发。

Joule:钙钛矿太阳能电池的回收利用来源:知光谷 发布时间:2025-12-05 09:52:48

钙钛矿太阳能电池实现了高效率和低成本制造,但面临着铅管理和有限使用寿命的挑战。近日,香港科技大学ZhouYuanyuan、香港浸会大学GuoMeiyu等人回顾了能够有效回收PSC的材料、设备和工艺特性。研究亮点:1)作者总结了技术经济分析和生命周期评估,这些分析和评估表明,通过多轮材料回收,成本和环境影响大幅降低,并比较了器件架构和功能层的回收途径。

郑州大学张懿强AM:双模式分子调控钙钛矿结晶,实现高效稳定的FAPbI₃太阳能电池与组件来源:知光谷 发布时间:2025-12-04 10:34:21

本研究引入二苯基碳酸酯作为双功能分子调控剂,可同时调控FAPbI薄膜的成核与生长过程。这种协同调控机制获得了均匀、大晶粒的钙钛矿薄膜,并显著降低了缺陷密度。因此,基于DPC的钙钛矿太阳能电池实现了26.61%的冠军效率,优于对照组器件。

周二军&于润楠&谭占鳌Nat Commun:通过晶界缓冲调控拉伸应变实现柔性钙钛矿太阳能电池的高效稳定来源:知光谷 发布时间:2025-12-03 09:24:30

本研究嘉兴学院周二军、北京化工大学于润楠和谭占鳌等人通过引入金属螯合物,调控钙钛矿薄膜的纳米力学性能。该策略不仅聚焦于薄膜的纳米力学特性,还揭示了其物理性能与机械柔韧性之间的内在联系。纳米力学-光电性能协同调控:系统阐明了金属螯合物通过静电作用与氢键调控薄膜模量与应变,同步提升载流子寿命与器件稳定性,为柔性光电器件设计提供新思路。

天合光能高纪凡:创新开发叠层钝化膜技术及先进金属化技术来源:索比光伏网 发布时间:2025-12-02 16:20:36

高纪凡进一步表示,效率、可靠性的提升及成本的下降,充分展现了TOPCon电池的技术潜力与发展空间,进一步巩固了TOPCon技术的竞争优势,为公司持续引领光伏技术发展奠定了坚实基础。

成都理工大学彭强EES: 介电分子桥使26.60%的高效耐用倒置钙钛矿太阳能电池具有高反向击穿电压来源:先进光伏 发布时间:2025-12-02 14:16:40

实验结果表明,F-CPP处理后的钙钛矿薄膜介电常数提升约2倍,器件瞬态反向击穿电压达-6.6V,为银基钙钛矿太阳能电池中的最高值之一。结论展望本研究通过引入F-CPP介电分子桥,成功实现了钙钛矿太阳能电池效率与反向击穿电压的双重突破,首次系统解决了钙钛矿电池在实际应用中的反向偏压稳定性难题。

HZBA助力锡铅钙钛矿太阳能电池:抑制锡离子氧化+钝化缺陷,效率达21.09%来源:光伏研工坊 发布时间:2025-12-02 13:53:58

近期,一项关于“4-肼基苯甲酸(HZBA)添加剂”的研究,为解决这些难题提供了有效方案,让锡铅钙钛矿太阳能电池的光电转换效率实现显著突破。