当前位置:首页 > 光伏资讯 > 光伏要闻 > 正文

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?

来源:索比光伏网发布时间:2017-07-03 23:59:59


大家都知道电站“转换效率”非常关键,因为它直接影响到了发电收益。虽然上面提到的两个核心部件的转换效率已实现了跨越式突破,但还是经常看到光伏电站的统计数据中,从光伏组件直流转换为电网交流的转换效率却低至74~80%。即使逆变器转换效率实际为98%,但是这个差额18~24%去哪里了?

有人可能怀疑是交直流电缆线损、直流汇流箱或交流配电柜损耗所导致,但是这部分损耗一般仅为1~3%左右,还是解释不了这么大的能量损失。其实,站在整体系统的角度考虑,“发电量损失”的根源正是“组件串联的木桶效应所导致的失配损失”,木桶效应是光伏发电损失的罪魁祸首,这也是本文所要讨论的核心问题。

01光伏组件的伏安特性

当前光伏发电市场的应用主流是晶硅组件,包含多晶和单晶。薄膜电池可弯曲性好、弱光发电能力较强,但相比较之下,晶硅组件性价比、能量密度更高及长期运行稳定性更好。所以,晶硅组件也成为本文的主要讨论对象。晶硅组件核心材料是量大价低的半导体硅,主要由电池片、焊带、背板、边框、及内含旁路二极管的接线盒等构成,如图1所示。

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?


图1 晶硅光伏组件的外形图
光伏组件内部电池片的等效模型如图2所示,其中Rs为组件串联阻抗、Rsh为组件自身阻抗。光伏电池本质上是一个电流源,只是这个电源流被二极管限定电压至0.5~0.7V。由于晶硅组件内部由多个电池片串联而成,因此组件输出电压大约为30~42V。

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?


图2 光伏组件内部电池片的等效模型
基于以上电池片等效模型,可以得到以下光伏电流和电压之间的数学函数关系式。根据高等数学的相关知识,从这个函数关系可以清楚看出,这两者之间是一种非线性关系。

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?

光照强度直接影响组件输出电流,以sunpower黑硅单晶组件为例,如图3所示(https://us.sunpower.com/sites/sunpower/files/media-library/data-sheets/ds-e18-series-225-solar-panel-datasheet.pdf)。光照强度为200w/m2时,组件电流为1.2A;如果光照强度增大至1000w/m2时,组件电流相应增大至6.0A,从而说明组件电流与光照强度成正比,反之亦然。

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?


图3 光伏组件的伏安特性曲线
由图3也可看到一个有趣并且重要的现象,即在标准测试条件(STC)下,每种光照条件的伏安特性曲线只有一个拐点,这个点就是光伏组件的最大功率点(MPP)。另外,如果STC中的环境温度由25C增大至50C时,同种光照强度下组件电流基本无变化,但组件电压会降低,从而说明环境温度直接影响光伏组件输出电压。

图4清楚说明了晶硅组件的温度特性:相对于25Cº标准测试条件,温度每升高1Cº,组件电流可增大0.067%,组件开路电压降低0.33%,组件最大功率降低0.43%。从而温度对组件电压影响较大,但对组件电流影响不大,基本可以忽略不计,因而温度每升高1Cº,组件MPP电压降低0.43%。这里插个题外话,在组串中选择组件串联的个数时,需根据所选用的组件温度系数,仔细核算低温下组串电压不可超过逆变器的最大输入电压。

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?


图4 晶硅组件的温度特性
02组件和组串的内部串联结构

经常听到晶硅组件60片、72片的说法,这个实际讲的是组件内部电池片串联的个数,每个电池片是一个独立的光伏电池单元。如图5所示,每20片或24片光伏电池对应一个子串,光伏组件由3个子串串联而成,每个子串两端反并联一个旁路二极管,旁路二极管可减轻热斑效应。这3个子串的输出线及旁路二极管在组件接线盒中用于电气连接,再通过接线盒引出总的正负两根出线,也就是光伏组件日常附带的直流接头和电缆。

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?


图4 晶硅组件内部的3个子串及其旁路二极管
以上说明了晶硅组件内部由3个子串串联而成,其实当前光伏发电系统的光伏组串也是由多个组件串联而成,如图5所示。不管是集中式逆变器的直流汇流箱、还是组串式逆变器的直流输入端,都会接入光伏组串,组串一般由20~24个组件串联而成。所以,当前所有光伏发电本质上都是把多个电池片串联使用,以生成光伏组串的直流高压,便于逆变器实现并网交流发电。由初中物理知识可知,电路中不允许多个电流源串联,否则总电流由最小电流的电流源决定。另外在这里偷偷说一句,几个组串并联也存在能量损失,由于线路阻抗的存在,并联电压源的总电压由最低电压的电压源决定。

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?


图5 多个组件串联的组串式或集中式光伏发电系统
03光伏组件的木桶效应

参考度娘百科,盛水的木桶是由多块木板箍成的,盛水量也是由这些木板共同决定的。若其中一块木板很短,则此木桶的盛水量就被限制,该短板就成了这个木桶盛水量的“限制因素”(或称“短板效应”),如图6所示。若要使此木桶盛水量增加,只有换掉短板或将其加长才行。

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?


图6 木桶效应示意图
一个水桶无论有多高,盛水量取决于其中最短的那块木板,人们把这一规律总结为“木桶原理”或“木桶效应”,又称“短板理论”。其核心内容为:一只水桶盛水的多少,并不取决于桶壁上最长的那块木块,而恰恰取决于桶壁上最短的那块。根据这一核心内容,“木桶效应”还有两个推论:其一,只有桶壁上的所有木板都足够高,那水桶才能盛满水。其二,只要这个水桶里有一块不够高度,水桶里的水就不可能是满的。

为了让水桶尽量多装水,必须要找出薄弱环节(短板),并且改进该环节把这个短木板加长。命苦不能怨政府,幸福的家庭是相似的,而不幸的家庭各有各的不幸。很不幸光伏组件串联或内部串联子串都存在木桶效应,甚至可以说木桶效应已充满光伏发电系统中。

由于组件内部串联子串或组串中多个组件串联的本质特性相似,以下以组串为例说明。如图7所示,由3个光伏组件串联构成一个组串,每个组件电流相同时,构成组串的总电流也相同,实际上组串总电流等于每个组件电流。这种工作状况下,每个组件的MPP完全一致,当然这是一种非常理想而实际中并不存在的情形。

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?


图7 组件MPP一致情况下的组串电气特性
理想很丰满,现实太骨感。实际上,组串中每个组件MPP不可能完全一致,如图8所示的第3个组件(PV3)由于种种原因MPP发生变化,而第1、2个组件(PV1、2)仍然可实现MPP。这种情况下如果这3个组件仍然串联构成一个组串时,组串的总电流不可能达到理想数值,也不可能继续最大功率输出。组串最大输出功率受逆变器的MPPT算法限制,既可能工作于受电流源串联物理原的影响而电流限制在PV3的小MPP电流,也可能工作于PV1、2近似最大功率点而PV3旁路二极管导通的状态(即图8所示)。

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?


图8 组件MPP不一致情况下的组串电气特性
04木桶效应导致组件失配

上一节提到,当组串中组件PV3的MPP变小时,组串最大输出功率受逆变器的MPPT算法限制,既可能工作于受电流源串联物理原的影响而电流限制在PV3的MPP,此时的直观状态是组串电压高而功率小;也可能工作于PV1、2近似最大功率点而PV3旁路二极管导通的状态,此时的直观状态是组串电压低而功率大。

为了清楚解释这个问题,先得从光伏逆变器的内部构造说起。所有类型的光伏逆变器的功率回路由组件或组串、输入开关、EMI滤波、逆变电路、交流滤波、及输出开关构成,而信号回路由交直流采样、驱动电路、LCD显示、及控制构成,如图9所示。

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?


图9 光伏逆变器的内部构造
除了实现直流-交流功率变换和并网控制外,逆变器的关键功能之一是MPPT跟踪,其目的是通过组串电压扰动找到组串的最大功率点。具体控制策略主要使用爬山法、导纳法、神经网络等,当前产品化主要使用爬山法。这些MPPT算法可以寻找到光伏组串的最大功率点,但是无法找到每个组件的最大功率点,下面以图10中两个组件串联为例说明。

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?


图10 两个组件串联构成的一个组串
这个组串由两个组件串联构成,两个组件分别为I、II,使用第1节的组件等效模型和数学函数关系式,两个组件MPP一致时,组串电压分别与组串功率、电流的函数曲线只有一个转折点,也就是最大功率点;但第I个组件由于种种原因MPP发生变化,而第II个组件仍然可实现MPP时,组串MPP点出现了双峰,如图11所示的A、B点。山峰太多平时看起来很壮观、很漂亮,但是一旦出现在组串上,逆变器的MPPT算法就会搞晕,既可能呆在A点、也可能留恋B点。A点的电压低而功率大,实质上是组件I的旁路二极管导通了,不然组件I将承受反向电压而发生热斑效应而挂掉,这样损失了组件I的输出功率,因为其或多或少还是有输出功率的。而B点的电压高而功率小,实质上是组串电流等于组件I电流,而组件I电流远小于组件II,这样损失了组件II的部分功率。

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?


图11 两个组件串联构成的组串电气特性
光伏逆变器的常规MPPT算法是从组串的开路电压开始跟踪组串最大功率,因此最有可能的是可以找到B点。近年来国外有些老牌厂商也提出了MPPT的多峰算法,有可能可以找到A点,但是这种多峰算法实际中很少使用。为什么呢?只因为MPPT速度太慢,很可能由于使用这个算法而导致更多的光伏能量损失。

光伏组件MPP变小的直接原因是遮挡,也就是组件的光照强度下降。图12所示为单个电池片遮挡对组件功率影响的实验数据,如果单个电池片的遮挡面积为25%,组件功率损失为8.3%;如果电池片遮挡面积达到93.5%,组件功率损失为87.3%。这个木桶效应的影响非常大,因为组件内部存在60、或72个电池片,结果显示某个电池片被遮挡,光伏组件基本已经没有功率输出,而这个电池遮挡面积仅占整个组件的1.55%!

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?


图12 单个电池片遮挡对组件功率的影响
图13所示为单个组件遮挡对组串功率影响的实验数据,如果单个组件的遮挡面积为25%,组串功率损失为12.21%。这个木桶效应的影响非常大,因为这个组串由20个组件串联构成,而这个组件遮挡面积仅占整个组串的1%!

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?


图13 单个组件遮挡对组串功率的影响
木桶效应是光伏电池串联必须导致的结果,但是从经济性考虑,组件串联提高直流电压后才可降低电缆、逆变器等造价。

当然创新是无止境的,国外也有厂商把晶硅组件采用了类似碲化镉薄膜组件技术,把组件内部的电池片做成矩阵式结构,如图14所示。但是这种电池片矩阵式结构虽然消除了电池片级的木桶效应,但是并没有改变组件串联构成组串的悲催现实,这样光伏组串仍然存在木桶效应而导致组件失配的能量损失。除非把组件串联改成并联结构,这样直流母线电压将会很低,可以完全消除传统光伏系统的木桶效应问题,但会导致电缆、逆变器的损耗增大、造价增加。在这里呼吁一下愿意制造这种矩阵式电池片的组件厂,茂硕电气配合研发低压逆变器,我们在深圳等您。

另外,SNEC2017上看到有的组件厂推出了半片技术,有的也推出了每个电池片反向并联旁路二极管技术,半片技术、更多旁路二极管在一定程度上可以减轻木桶效应,只是要评估价格的增加幅度。

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?


图14 矩阵式电池片结构的组件并联系统
05导致木桶效应的根本原因

导致木桶效应的根本原因基本上可以分为两类:

一个是因为组件本身原因

另一个是使用组件的外部环境

一般人比较关注光伏组件的衰减和老化及制造过程的离散性,比如很多组件厂承诺头两年衰减不超过2%,10年内不超过10%,25年不超过20%。但是据统计,头两年衰减在2%以内的光伏组件基本很少。

另外,标称功率偏差也是光伏组件的一个重要参数,一般±3%以内是可以接受的,当然大厂做得更好也更有担当,只有正偏差而没负偏差。这个参数也说明,虽然组件的标称参数相同,但实际上输出功率曲线却有差异。但是更重要的是,每个电池片、组件的衰减速度、老化程度及功率偏差不可能完全相同,因此这样的电池片串联构成组件、这样的组件串联构成组串必然存在木桶效应。比如,60个电池片串联时,其中某个电池片提前老化了,那么就会造成整个组件的功率失配损失;20个组件串联时,其中某个组件功率是负偏差,虽然其他组件功率都是正偏差,这样也会造成整个组串的功率失配损失。

与组件本身原因相比较,使用组件的外部环境更加复杂,并且更容易导致木桶效应,而光伏电池串联系统容易发生木桶效应,其直接原因是组件内部每个电池片、或组串内部每个组件的光照不均匀导致的输出功率不相同。如图15所示,存在太多的外部环境容易使电池片、或组件之间的光照不均匀,比如屋顶发电的女儿墙对电池片、组件的部分遮挡;地面电站前后排组串的阴影;光伏组件表面的灰尘、积雪、脏污不一致;地面电站组件旁边的杂草;光伏组件的倾角不一致;组件老化不均匀;同一处光伏电站所使用的组件温度还有可能不一样;当然天上的朵朵白云也导致组件光照不一致。

干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?


图15 导致木桶效应的外部环境
因此,导致木桶效应的部分原因是可以解决的,比如阴影、杂草遮挡等,甚至现在组件出厂时还可以分级筛选,把性能相近的组件归到同一组串,但是这种措施没考虑到几年后组件的不均匀老化问题。但是,更多导致木桶效应的原因却难以解决,比如人们还控制不了云彩,也不可能让灰尘和积雪完全一致,更关键的是无法达到相同的组件衰减率。

06总结

为什么一再旗帜鲜明地不看好当前1500Vdc光伏系统呢,原因是没改变组件内部的电池片串联结构,主要是1500Vdc组串中组件串联的数量更多了,进一步提高了木桶效应出现的机率,并且组串MPP点出现山峰更多,从而木桶效应变得更加严重。

汇总全文内容,其实归根结底就是以下几句话:

1)、光伏组件由多个电池片串联构成,组件内部存在木桶效应;

2)、光伏组串由多个组件串联构成,组串内部存在木桶效应;

3)、造成光伏木桶效的根因部分容易处理,而更多的外部因素无法解决;

4)、矩阵化电池片的组件并联技术可消除木桶效应,但需评估效率和成本;

5)、电池半片、更多旁路二极管可减轻木桶效应,但需评估成本和工艺;

木桶效应所导致的组件失配会造成发电收益降低,并且降低的幅度高达18~24%。本来组件的光电转换效率已经够低了,就这么低的直流电力还不能实现全部的并网发电,即使逆变器转换效率高达98、99%也是枉然。

从根本上说,木桶效应的本质是低的组件利用率,而组件利用率既不是组件厂的技术范畴,传统逆变器公司也是无能为力,可以说还是一个空白区。为了提高组件利用率、消除木桶效率,优化器、微逆是其中切实可行的改进措施,并且这个是咱们电力电子人可以做的事情,也是本系列后续重点讨论的内容。

责任编辑:solar_robot

特别声明:
凡本网注明来源: "索比光伏网或索比咨询"的所有作品,均为本网站www.solarbe.com合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。

经本网授权使用作品的,应在授权范围内使用,并注明来源: "索比光伏网或索比咨询"。违反上述声明者,本网将追究其相关法律责任。
推荐新闻
河北4.85GW风光指标:大金重工、深能、远景等领衔

河北4.85GW风光指标:大金重工、深能、远景等领衔

11月28日,河北发改委公示了《河北省2024年风电、光伏发电开发建设方案第三批拟安排项目情况》,本次拟公示项目共47个、485.499万千瓦,其中保障性项目共32个、282.899万千瓦,市场化项目共15个、202.6万千瓦。从储能配套来看,保障性规模配储比例在15-20%·2h,而市场化项目配储比例大多为20%·4h。

光伏发电保障性项目
2024-11-29
山西10.47GW风光竞配结果出炉,国家电投、华能等领衔!

山西10.47GW风光竞配结果出炉,国家电投、华能等领衔!

根据《山西省2024年风电、光伏发电开发建设竞争性配置工作方案》,经各市初选上报,省能源局组织了2024年竞争性配置风电、光伏发电项目评审,优选出保障性并网项目100个、规模1047万千瓦,现将结果予以公示。

光伏发电竞争性配置
2024-11-28
总投资35亿!新疆伊犁700MW光伏项目开工

总投资35亿!新疆伊犁700MW光伏项目开工

11月24日,新疆伊犁市察布查尔县中科经证70万光伏发电项目开工仪式举行。

光伏发电项目
2024-11-27
国内最大机场光伏项目开工!

国内最大机场光伏项目开工!

11月21日,重庆江北国际机场光伏建设项目举行开工仪式。项目规划装机容量达30兆瓦,这也是目前国内民用机场建设规模最大的分布式光伏发电项目,预计2025年上半年全部建成投产运营。

光伏项目分布式光伏发电
2024-11-25
荣登新华社榜单!TCL光伏科技项目入选“年度零碳成果”

荣登新华社榜单!TCL光伏科技项目入选“年度零碳成果”

近日,新华社“智能·零碳”栏目公布了“2023-2024智能·零碳成果展映”入选项目名单,由TCL光伏科技投资建设的广东梅州五华6MW地面分布式光伏电站项目荣登榜单。该项目采用“农光互补”、“渔光互补”模式,彰显了TCL光伏科技在“光伏+”领域的创新能力,以及对光伏助农惠农的不懈探索。

TCL光伏科技光伏电站
2024-11-29
天合跟踪:聚焦技术创新,电气数智化成果助力新型电力系统构建

天合跟踪:聚焦技术创新,电气数智化成果助力新型电力系统构建

近年来,天合跟踪在技术创新方面不断突破:2020年率先在2P产品上应用了多点驱动技术,打造行业最省桩的2P产品;2022年推出搭载智合智能跟踪算法和智慧云平台的全新1P产品,引领国内智能跟踪技术升级;2023年行业首创用电气传动取代了传统的机械传动技术,让支架和电气数智化深度结合,进一步提升了电站的安全性与发电效率。

天合跟踪新型电力系统光伏电站
2024-11-28
中节能拟募资29.5亿,用于建设6个光伏项目

中节能拟募资29.5亿,用于建设6个光伏项目

近日,中节能太阳能股份有限公司发布公告称,公司将向不特定对象发行可转换公司债券并在主板上市,募集资金总额不超过29.5亿元,扣除发行费用后的净额将全部用于光伏电站项目建设。

中节能光伏电站
2024-11-25
3.68亿元,晶科科技向长江智慧转让300MW光伏电站股权

3.68亿元,晶科科技向长江智慧转让300MW光伏电站股权

11月19日,晶科科技发布第三届监事会第十二次会议决议公告。审议通过了《关于全资下属公司股权转让暨募投项目转让的议案》,为持续推进“滚动开发”的轻资产运营战略,提高资金使用效率,晶科科技全资子公司晶科电力

晶科科技长江智慧光伏电站
2024-11-20
晶澳组件多场景质量保证(三):直面干热挑战,征服沙漠极境

晶澳组件多场景质量保证(三):直面干热挑战,征服沙漠极境

在前面探讨了晶澳DeepBlue 4.0 Pro系列组件在湿热、极寒等各类环境下的卓越表现之后,本期我们将重点聚焦光伏组件如何在干热环境下的沙戈荒等地区保持高质量、高可靠及高发电水平。

晶澳科技光伏组件
2024-11-29
共探产品力提升 | 正泰新能出席PV ModuleTech Europe

共探产品力提升 | 正泰新能出席PV ModuleTech Europe

当地时间11月26日至27日,由PV-Tech主办的欧洲专业光伏论坛PV ModuleTech Europe 2024在西班牙这片光伏热土举行,本次大会汇聚了全球光伏尖端人才,共同探讨欧洲光伏市场未来前景。正泰新能凭借着在光伏组件领域的长期耕耘积累,受邀出席本次盛会。

正泰新能光伏组件
2024-11-28
印度光伏产能将增至80GW!

印度光伏产能将增至80GW!

随着全球对可再生能源需求的不断增长,印度传统上依赖中国制造电池装配光伏组件的局面正在发生深刻变化。印度政府近日提出了提升国内太阳能电池产能的新任务,预计到2026年,印度的电池产能将大幅跃升至80GW以上,占预计投运的172GW组件产能的近50%。

可再生能源光伏组件
2024-11-27
​脉络能源百MW钙钛矿光伏组件生产线首片下线,1.2x1.6平米组件全面积效率达17.5%

​脉络能源百MW钙钛矿光伏组件生产线首片下线,1.2x1.6平米组件全面积效率达17.5%

脉络能源在珠海市香洲区正菱(三溪)高科园建成100MW钙钛矿光伏组件生产线,并成功实现首片组件下线。该生产线主要生产面积为1.2x1.6m2的大面积地面电站和光伏建筑一体化(BIPV)用钙钛矿光伏组件,同时兼容室内弱光组件和大面积柔性组件的生产。

​脉络能源钙钛矿光伏组件
2024-11-26
返回索比光伏网首页 回到干货分享:头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?上方
关闭
关闭