这才是黑科技:不用电池板 照样搜集太阳能

来源:发布时间:2017-03-28 08:53:59

近几十年来,自从我们意识到环境的恶化几乎完全由人类的各种活动引起,对于气候的各种各样的讨论就没有停断过。同时,从那以后,各个领域的研究人员都希望能够为改善环境贡献出一份力量,努力地研究如何减少工业碳排放量。

比如,刚研发出来的叶子分子 。

图片来源:Ben Noffke and Richard Schaugaard, Indiana University

关于如何更好更有效地回收地球的大气层里的二氧化碳,由印第安纳大学(Indiana University)伯明顿分校的化学家李亮石为首的国际研究小组发现了一个新方法。

通过光和电的作用,由李亮石团队研究出来的这个新分子可以将“臭名昭著”的温室气体——二氧化碳转化为一氧化碳,这是迄今为止减少碳排放的最有效的办法。

同时,由这个分子生成的一氧化碳可以再次被用作燃料,燃烧一氧化碳释放出大量的能量,以及生成物——二氧化碳。

然而,根据能量守恒定律,将二氧化碳转化为一氧化碳需要的能量与燃烧一氧化碳释放出来的能量相当,因此,这个循环的过程在理论上很有可能导致二氧化碳的增加。

如果不能提高二氧化碳转化为一氧化碳的化学反应效率,这个方法就只会是个失败。

图片来源:Indiana University

这也是李亮石团队工作的重点和亮点,通过利用太阳能和提高这个转换循环过程的效率,最终达到减少上面所说的二氧化碳增加量的目的。

这个叶子分子的结构同纳米单层石墨烯,对外表现为黑色,可以吸收大量的阳光,然后利用这个分子络合物中的铼元素(75号元素)作为化学反应的“引擎”,可以触发二氧化碳转化为一氧化碳的高效反应。

所以说,这个新型分子有望帮助我们解决二氧化碳引发的温室气体效应。

我们也知道,自从工业革命以来,在这过去的一百五十年里,大气中二氧化碳的含量已经从百万分之二百八十涨到了百万分之四百,也就是说现在大气中二氧化碳的含量约为工业革命之前的1.5倍,这个数字不得不引起人类的注意和警惕。

科学研究人员一致认为,由人类活动释放的温室气体使地球的温度增高的可能性高达95%。

虽然对于这个新型分子能够有效地减少温室气体的增加的问题,李亮石表示十分高兴,但是他希望,在今后的研究中,可以改善这个叶子分子,使其能够以非液态的形式稳定地存在。

当然,整个团队也在试图利用锰元素取代叶子分子中的铼元素而实现同样的功能,因为锰元素较铼元素更为常见,具有在市场上广泛使用和推广的潜力。

不过,即使没有这些改进,这个叶子分子在阻止气候变化方面依然有着不可忽视的作用


索比光伏网 https://news.solarbe.com/201703/28/143839.html
责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
通威太阳能科技金堂基地顺利通过CBC光伏组件耐候性认证工厂审核​来源:通威集团 发布时间:2025-12-10 09:27:48

近日,通威太阳能科技金堂基地正式通过CBC国信认证光伏组件差异化应用耐候性“国品优选”认证工厂审核。未来,通威太阳能科技金堂基地将以此为契机,持续深化特殊场景光伏组件的生产与质控工作,依托认证标准指引,不断提升产品在极端环境下的发电效率与使用寿命,持续提供高品质、高可靠性的组件产品,为光伏产业高质量发展与全球能源转型贡献力量。

中节能 | 集团公司战略规划与发展部、科技管理部赴太阳能平邑独立共享储能电站项目调研来源:中节能太阳能 发布时间:2025-12-10 08:49:39

12月4日,集团公司战略规划与发展部副主任赵国峻、科技管理部副主任谢正武一行赴太阳能公司华北区平邑180MW/360MWh独立共享储能电站开展现场调研。下一步,太阳能华北区将全面统筹推进电力交易与储能电站安全运维工作,紧跟集团公司战略部署,以“价值创造”为导向,扎实做好储能电站项目规划与申报、科技研发与市场拓展等重点工作,持续释放储能项目的经济价值、社会价值与生态价值,为集团高质量发展与价值创造注入持续动能。

通威太阳能科技金堂基地荣膺“AAA级信用企业”来源:通威集团 发布时间:2025-12-09 08:46:12

通威太阳能科技金堂基地获评“企业信用评价AAA级信用企业”作为西南首座GW级光伏组件工厂,通威太阳能科技金堂基地自成立以来,将“安全第一、诚信为本、客户至上、共赢共创”的核心价值观深植发展基因,贯穿生产运营全流程。通威太阳能科技金堂基地“企业信用评价AAA级信用企业”对应的等级证书可在商务诚信公共服务平台、中国信用招标投标网、商业信用信息公共服务平台等国家级平台查询,企业信用状况实现公开可溯。

日本松下在办公窗户上测试玻璃基钙钛矿太阳能电池板来源:pv-magazine 发布时间:2025-12-04 14:55:48

在研究中,松下玻璃型钙钛矿太阳能光伏被用于四个带有防水木质推拉框的YKK内窗,尺寸为723毫米×1080毫米。松下公司开发钙钛矿太阳能技术已超过十年。

通威太阳能科技南通基地被评为2025年度江苏省绿色工厂来源:通威股份 发布时间:2025-12-02 09:41:32

近日,江苏省工业和信息化厅公布了2025年度江苏省绿色工厂入围名单,经企业申报、各地推荐、专家评价、信用审查、专题会审等程序,通威太阳能科技南通基地凭借其出色的绿色低碳、信息化智能制造能力,成功被评为江苏省绿色工厂。

明星电站专刊 |中节能太阳能华东区埇桥朱仙庄70兆瓦采煤沉陷区水面光伏发电项目——废弃水域的“净化密码”来源:中节能太阳能 发布时间:2025-12-02 09:33:17

明星电站专刊太阳能华东区:废弃水域的“净化密码”埇桥朱仙庄70兆瓦采煤沉陷区水面光伏发电项目在安徽宿州埇桥区朱仙庄镇的采煤沉陷区,波光粼粼的水面上,深蓝色光伏板如蓝色纽带般铺展,昔日垃圾遍布、杂草丛生的废弃水域,如今已蜕变为年产千万度绿电的“水上能源基地”。中节能埇桥朱仙庄70兆瓦采煤沉陷区水面光伏发电项目,用灿烂的阳光在这片曾因煤炭开采而伤痕累累的土地上,编织“变废为宝”的绿色传奇。

通威太阳能科技金堂基地顺利入选2025年大企业大集团定向采购激励项目支持企业名单来源:通威集团 发布时间:2025-11-27 11:55:22

通威太阳能科技金堂基地成功入选2025年大企业大集团定向采购激励项目支持企业名单本次项目成功入选,充分肯定了金堂基地带动上下游产业集聚发展示范作用,且项目规模优势明显,生产技术先进,具备强劲的辐射带动力,极大程度上提升了产业整体竞争力。

奋战四季度 | 中节能太阳能公司以科技创新促精益管理来源:中节能太阳能 发布时间:2025-11-26 11:35:00

前言自太阳能公司三季度经营分析会召开以来,各单位深入贯彻会议精神,紧紧围绕落实“一保五有”目标,聚焦“科技创新有进展”要求,研究贯彻措施,在电站运营管理全流程、各环节,以新技术新服务推动精益管理提质升级,取得了积极成果,为公司平稳健康发展注入强劲动力。结语从戈壁电站到平原项目,从运维现场到管理中枢,太阳能公司以科技创新绘就精益管理新图景。

通威太阳能科技金堂基地顺利通过PCCC及绿色产品认证年度监督审核来源:通威集团 发布时间:2025-11-26 10:16:29

近日,通威太阳能科技金堂基地成功通过电能(北京)产品认证中心PCCC产品认证及绿色产品认证年度监督审核,这标志着金堂基地在绿色生产体系构建与可持续发展战略实施方面,持续保持行业先进水平并获得权威机构认可。一直以来,通威太阳能科技金堂基地始终将产品质量管控与环保责任履行作为企业核心发展战略。

浦项科技大学Kilwon Cho团队AEM.:有机间隔阳离子工程实现高效稳定甲脒钙钛矿太阳能电池!来源:先进光伏 发布时间:2025-11-17 09:55:00

韩国浦项科技大学KilwonCho团队系统研究了不同有机间隔阳离子构建的低维钙钛矿对甲脒铅碘晶体形成与光电性能的调控机制。该成果以“MolecularEngineeringofOrganicSpacerCationsforEfficientandStableFormamidiniumPerovskiteSolarCell”为题发表于AdvancedEnergyMaterials。结论展望本研究通过有机间隔阳离子分子工程,明确了LD钙钛矿的晶体结构对甲脒钙钛矿结晶质量与光伏性能的关键影响。未来通过进一步优化间隔阳离子的化学结构、调控LD/3D比例,有望实现更高效率与更长寿命的钙钛矿太阳能电池,推动其商业化应用。

苏州大学杨新波&张晓宏&阿卜杜拉国王科技大学De Wolf最新Nature:认证33.6%创柔性钙钛矿/硅叠层太阳能电池纪录来源:先进光伏 发布时间:2025-11-12 16:23:58

刚性叠层电池的效率纪录不断被刷新,从2013年的13.7%一路攀升至2025年的34.9%,然而柔性叠层电池的发展却始终滞后,此前最高效率仅为29.88%。深度精读图1:器件结构与性能突破图1展示了柔性钙钛矿/晶硅叠层太阳能电池的器件结构与关键性能。冠军器件认证效率达33.6%,开路电压创2.015V纪录,稳态功率输出达33.2%。这些数据充分验证了该柔性叠层电池在实际应用场景下的可靠性。柔性叠层电池效率随退火温度升高而提升,最优条件下平均效率达33.4%。