薄膜光伏可以说虽然在市场上远远落后于晶硅光伏,但其独特的薄膜特性使得光伏业内外都非常看好薄膜光伏的前景。国内薄膜光伏领军人物——李河君甚至断言,晶硅太阳能终究会消失,未来光伏是薄膜的天下。那么我们以其中最热门的一类CIGS来看,光学薄膜究竟是如何走进太阳能电池的...























索比光伏网 https://news.solarbe.com/201511/20/92231.html
薄膜光伏可以说虽然在市场上远远落后于晶硅光伏,但其独特的薄膜特性使得光伏业内外都非常看好薄膜光伏的前景。国内薄膜光伏领军人物——李河君甚至断言,晶硅太阳能终究会消失,未来光伏是薄膜的天下。那么我们以其中最热门的一类CIGS来看,光学薄膜究竟是如何走进太阳能电池的...























索比光伏网 https://news.solarbe.com/201511/20/92231.html
本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。
经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!
近日,中国光伏行业协会分享了年度报告中第七篇,我国钙钛矿太阳能电池发展情况我国钙钛矿太阳能电池发展情况
近期,极电光能联合创始人、总裁于振瑞在接受新华财经专访时表示,我国钙钛矿光伏技术在世界舞台上表现亮眼,不断刷新转化效率世界纪录。然而,产业化之路并非坦途,欧美等国企业正在钙钛矿电池技术等方向加速布局,竞争态势愈发激烈。我国要想稳固在全球钙钛矿领域的领先地位,政策支持与产业链协同不可或缺。
钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)已突破26.5%,逐步逼近最先进的晶体硅太阳能电池水平。在反式钙钛矿电池性能提升过程中,有机空穴选择性自组装分子(SAMs)发挥了关键作用。要实现钙钛矿光伏技术的进一步发展,SAMs需兼具增强的空穴传输性能、优异稳定性及大面积溶液加工性,但同步满足这些特性的分子设计仍存在重大挑战。
太阳能电池技术更迭的历史洪流中柔性钙钛矿太阳能电池(f-PSCs)无疑是最耀眼的明星。黄劲松团队最新发表在《Advanced Materials》上的综述文章全面总结了这一领域的最新进展,揭示了柔性钙钛矿技术如何从实验室走向市场,以及在这一过程中面临的挑战和解决方案。作者分享给对柔性电池感兴趣的朋友。
为突破这一限制并进一步降低光伏发电的平准化成本,超越单结器件效率极限的多结架构方案成为迫切需求。其中全钙钛矿叠层太阳能电池通过能带隙可调的钙钛矿材料,可将两个或多个能带互补的子电池集成于单一器件(如框1所示),该技术通过减少光子热化损失,使认证能量转换效率(PCE)突破30%,显著优于单结硅基(27.4%)和钙钛矿(26.7%,最高为27%了)电池。更值得注意的是,全钙钛矿叠层微型组件效率已达24.8%,超越单结钙钛矿组件23.2%的纪录。
晶硅太阳能电池由于带隙约为1.1 eV,其肖克利–奎塞尔(SQ)极限效率约为30%。当前世界纪录的背接触异质结电池效率已达27.3%,接近理论极限。然而常规单结电池存在严重的光谱失配损失:高能光子热化和低能光子透过导致约70%的能量浪费。为突破这一瓶颈,光谱转换技术(包括上转换和下转换/量子裁剪)被提出作为有效途径。在这些技术中,光子倍增(即量子裁剪)可以将一个高能光子“切分”为两个或多个低能光子,潜在地提高光电转化效率。
在推动钙钛矿太阳能电池产业化的征程中,如何制备高质量的大颗粒、低缺陷的宽带隙钙钛矿薄膜,一直是效率提升和稳定性改善的核心难题。近日,研究团队提出了一种简便有效的溶剂气相熏蒸策略(DMSO fumigation),在不更改前驱体配方的情况下,显著改善了宽带隙钙钛矿的结晶过程,制备出高质量薄膜,成功实现了30.9%的钙钛矿/硅(TOPCon)叠层电池转换效率(认证效率30.83%),迈出了产业化关键一步。
6月11日,万众期待的第十八届(2025)SNEC国际太阳能光伏与智慧能源大会暨展览会在上海国家会展中心盛大开幕。
6月10-13日,2025年SNEC将在上海国家会展中心如约而至。此前的5月26日,世界“太阳能之父”马丁・格林教授团队发布了最新一期的《太阳能电池效率表》(Solar Cell Efficiency Tables, Version 66)。该报告收录了截至2025年全球太阳能电池技术的最新效率数据,再次成为行业技术发展的风向标。
海南大学孙萍萍&南方科技大学徐保民&Aung Ko Ko Kyaw在期刊《Advanced Materials》发文,题为“Adhesively Bridging Co-Self-Assembled Monolayer and Perovskite Via In Situ Polymerization for Enhanced Stability of Inverted Perovskite Solar Cells”。
来自杭州微导纳米科技有限公司、浙江科技学院土木工程与建筑学院、浙江大学光电科学与工程学院等机构的科研人员在Science上发表了一项突破性研究,题目为3D laminar flow–assisted crystallization of perovskitesfor square meter–sized solar modules,展示了利用3D打印技术优化钙钛矿太阳能电池(PSCs)大规模制造工艺的创新方法。



