高效SiC技术的介绍和分析

来源:Solarzoom发布时间:2015-03-03 11:43:36
 摘要:随着电力电子变换系统对于效率和体积提出更高的要求,SiC(碳化硅)将会是越来越合适的半导体器件。尤其针对光伏逆变器和UPS应用,SiC器件是实现其高功率密度的一种非常有效的手段。本文主要介绍SiC技术优点、缺点及目前应用层面的一些瓶颈。

1.引言

由于SiC相对于Si的一些独特性,对于SiC技术的研究,可以追溯到上世界70年代。

简单来说,SiC主要在以下3个方面具有明显的优势:

 

  • 击穿电压强度高(10倍于Si)

 

 

  • 更宽的能带隙(3倍于Si)

 

 

  • 热导率高(3倍于Si)

 

这些特性使得SiC器件更适合应用在高功率密度、高开关频率的场合。当然,这些特性也使得大规模生产面临一些障碍,直到2000年初单晶SiC晶片出现才开始逐步量产。目前标准的是4英寸晶片,但是接下来6英寸晶片也要诞生,这会导致成本有显着的下降。而相比之下,当今12英寸的Si晶片已经很普遍,如果预测没有问题的话,接下来4到5年的时间18英寸的Si晶片也会出现。

Vincotech公司十几年前就已经采用SiC二极管来开发功率模块。SiC二极管由于其卓越的反向恢复特性,可以有效的减小它本身的开关损耗和IGBT的开关损耗。SiC肖特基二极管虽然已经应用了很多年,但是还需要进一步改善价格来获得更广阔的市场。

最近几年的主要研究和应用是基于SiC的有源开关器件,比如SiC MOSFET和SiC JFET. 从目前电压等级4Kv以下的应用来看,SiC MOSET有打败SiC JFET的势头。SiC MOSFET有着卓越的开关损耗和超小的导通损耗。SiC MOSFET大批量商业化的最大障碍目前还是由于其居高不下的价格。然而我们还是要综合评估整个系统成本,因为SiC MOSFET还是带来系统整个体积和其他成本的下降。文本会介绍一些SiC和Si在效率、损耗方面的对比来证明SiC在高频应用上的优势。

2.采用boost模型,对比分析SiC和Si器件的损耗

我们来看一下boost电路。像光伏逆变器的前级升压就会用到这类电路。下图1是典型的boost电路拓扑。

图1: boost电路拓扑

我们以光伏应用中最典型的工况为例,输入350V,输出700V。输入电流和开关频率暂时不定。以下的仿真对比分析会采用Vincotech FlowISE仿真工具,这样可以更快的对不同电流,不同频率的工况做出对比分析。这些对比分析会采用以下几款型号来代表不同的芯片组合:

-IGBT + Si 二极管

o flowBOOST 0 (型号:V23990-P629-F72-PM) 1200V/40A 超快IGBT+30A/1200V STEALTHTH 二极管

-IGBT + SiC二极管

oflowBOOST 0 ( 型号:V23990-P629-F62-PM) 1200V/40A 超IGBT+3*1200V/5A SiC二极管

-SiC MOSFET+ SiC二极管

o flowBOOST 0 SiC (型号:10-PZ12B2A045MR-M330L18Y) 45 mΩ/1200 V SiC MOSFET + 4x10 A/1200 V SiC 二极管

接下来我们来看一下它们的效率对比。首先把Si二极管改成SiC二极管。图2是两者不同功率时效率的对比曲线。当开关频率大于4Khz时,SiC二极管对效率的改善就显现出来。当开关频率16Khz,电流5A时,损耗下降50%,由1.6%下降到0.8%。如果进一步把IGBT也改成SiC MOSFET的话,损耗进一步下降37%到0.5%。如图3. 当开关频率进一步提高,大于32Khz时,SiC MOSFET的效果将会更加明显。保持输入电流不变,进一步提升开关频率由16khz到64Khz,损耗相对下降35%。从这里可以看出,SiC MOSFET非常适合高频化的应用,甚至是在大电流输入的时候,只要能保证有较好的散热系统。以上的这些仿真是基于散热器温度80度。Si器件由于其自身的限制,在高频、高效的应用中会有很多局限,而SiC不同,正是其自身的属性,刚好可以满足更高效率、更高开关频率的应用。

图2:IGBT+ Si 或者SiC二极管,4到16Khz时不同电流的效率对比曲线

图3:IGBT+ SiC二极管和SiC MOSFET+ SiC二极管,16到64Khz,不同电流的效率对比曲线

下面的几幅图从输出电流能力的角度来说明SiC器件相对Si器件的优势。例如,假设50W总损耗,开关频率16Khz,如图4所示,IGBT+SiC二极管的组合,输出电流能力比IGBT+Si二极管的组合大85%。

保持SiC二极管不变,对比IGBT和SiC MOSFET的性能。从图5可以看出,SiC MOSFET+SiC二极管的组合输出电流能力比IGBT+SiC二极管要大50%。输出能力的提升,主要的根源在于不同的芯片配置,可以有效的减小器件的损耗。

图4:IGBT+Si二极管或者SiC二极管,4到16Khz时输出电流能力和损耗的关系曲线

图5:IGBT+SiC二极管或者SiC MOSFET+SiC二极管,16到64Khz时输出电流能力和损耗的关系曲线

另外一个有趣的对比是基于损耗和开关频率。如图6, IGBT+Si二极管的损耗,随着频率的改变损耗变化幅度非常大,而IGBT+SiC二极管的损耗,随着频率的变化改变不是很大。尤其是在16K到48K,通过芯片电流为5A时,其总损耗几乎是线性的,增加幅度较小。那么如果把IGBT换成SiC MOSFET会是什么情况呢?

如图7,当改用SiC MOSFET,线性的频率范围几乎扩大了一倍,从16到100Khz范围内,损耗都是线性的,变化很小。这就是为什么SiC MOSFET+SiC 二极管的组合可以工作在高频的原因。而我们致力于高频化的重要原因就是为了减小整个系统的体积和成本。经过最后的估算,纯SiC器件方案(SiC MOSFET+SiC二极管)比Si器件方案(IGBT+Si二极管)损耗下降80%,非常有助于帮助工程师实现高效、高功率密度的产品设计。

图6:IGBT+Si二极管或者SiC二极管,不同电流条件下,开关频率和损耗的关系

图7:IGBT+SiC二极管和SiC MOSFET+SiC二极管,不同电流条件下,开关频率和损耗的关系

1.SiC器件面临的挑战

在如今,成本是新产品设计背后的主要考量因素之一。目前SiC器件高昂的成本仍是限制其赢得很多市场份额的最主要原因。但是随着用量的增加和新一代SiC技术的应用,这个价格障碍正逐渐被削弱。例如,600V SiC二极管的价格从2011年到现在,已经下降了大约35%到45%。人们预计在接下来几年里还会再下降大约10%。1200V 80mOHM的SiC MOSFET价格,预计在未来的三到四年里下降50%。这样的价格水准,势必会带来更为广阔的应用空间。

另外一个是技术层面的挑战。组装和绑定线工艺必须适应SiC器件高功率密度,高温的性能。SiC器件在保持散热器温度不变的条件下,可以工作在非常高的电流密度和温度条件下。这会使得绑定线和焊接的结合点获得更高的热应力,传统的绑定线和工艺会影响功率模块的寿命。因此组装和绑定工艺需要改进,比如采用Sintering(银烧结工艺),优化绑定线技术,采用铜编织带或者大面积的银箔接触来克服高温的问题。另外,SiC芯片的缺陷密度也远大于Si,这也是为什么常用的SiC芯片目前的电流能力都是5到10A。当然当今最大的电流能力也能做到50A,但是成本会很贵。

2.总结

本文主要介绍了功率模块中SiC二极管,SiC MOSFET对于损耗下降,效率提升的作用。这对一些要求高效且高功率密度的设计,比如光伏逆变器,就非常有意义。研发人员采用此类的功率模块,可以有效的提升开关频率,降低光伏逆变器的体积,同时提升效率。(文|吴鼎 Vincotech中国区FAE)

索比光伏网 https://news.solarbe.com/201503/03/66732.html

责任编辑:carol
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
科学家研发自修复封装材料,阻铅超99%!为钙钛矿光伏技术的可靠性提供了关键解决方案来源:钙钛矿材料和器件 发布时间:2025-12-05 14:36:42

钙钛矿太阳能电池凭借其高光电转换效率与低制造成本,正成为下一代光伏技术商业化进程中的领跑者。因此,亟需开发一种能够快速响应损伤、具备高效自修复能力与主动铅捕获功能的新型封装材料,这已成为推动钙钛矿光伏技术实现安全、可持续商业化所必须突破的关键瓶颈。

正信光电 | 让每一瓦电力更高效的光伏科技制造工厂来源:正信光电 发布时间:2025-12-04 14:57:25

作为全球领先的光伏组件制造商,正信光电自成立以来,始终致力于通过创新的技术和精密的生产工艺,推动绿色电力的普及与应用。正信光电始终坚持技术创新和质量至上的原则,通过精密的工艺和智能化的生产管理,我们为每一块光伏组件注入可靠的动力,让每一瓦绿电都更高效。正信光电,凭借卓越的工艺与技术,让光伏组件走向未来。

引领人类社会进入零碳时代——爱旭董事长陈刚在全球BC技术创新峰会的主题演讲来源:爱旭股份 发布时间:2025-11-25 15:53:06

11月24日,2025全球BC技术创新峰会在创新之都浙江义乌召开,本次峰会集结了500余位顶尖专家、头部企业和知名机构,以顶尖卓识共谋光伏产业新篇章。爱旭股份董事长陈刚在峰会发表题为《引领人类社会进入零碳时代》的主题演讲。各位嘉宾,各位朋友,热爱BC技术的同仁,上午好!目前,通过低效的光合作用储存的化石能源已被人类消耗过半。爱旭的全体员工将秉持着“引领人类社会进入零碳时代”的使命,不懈努力、奋斗!

破局而立!创维光伏竞界系列携新一代ABC技术闪耀山东,开启高效发电新时代。来源:索比光伏网 发布时间:2025-11-25 14:16:10

现场签约创维光伏山东推介会告捷创维光伏于2025年11月15日在济南成功举办“竞界系列ABC组件”专题推介会,来自省内外的渠道商、工程商、行业媒体齐聚一堂,共同见证高效组件技术在分布式与地面电站市场上的新突破。这一特性让ABC组件在极端气候下也能发挥优势,确保电站整体收益不受温度波动影响。本次竞界系列ABC组件在山东推介会的亮相,全面展现了创维光伏在高效组件领域的技术成果与布局决心。

前沿光伏技术之中间带太阳电池:让低能光子“无处可逃”的超能武器来源:网络 发布时间:2025-11-24 11:09:28

以晶体硅为代表的第一代太阳电池,其效率已接近理论极限,提效空间有限;第二代太阳电池(CdTe、CIGS、非晶/微晶硅等)虽然生产成本较低,但效率偏低,且其中部分材料存在资源稀缺或环境毒性等问题,难以支撑大规模可持续应用。在此背景下,第三代太阳电池应运而生,包括有机光伏、钙钛矿电池、多结叠层、中间带、热载流子、光子/激子倍增以及热光伏等。这些新技术的共同目标是在不增加复杂封装与阳光跟踪系统的前提下,不断推动单片电池转换效率的提升。

国内聚焦 | 高效率、低成本与高量产适配协同共进 一道新能DBC技术进阶引领行业革新来源:一道新能 发布时间:2025-11-19 09:19:13

工艺革新:低成本高量产,破解行业“不可能三角”DBC3.0Plus技术成功破解高效、成本、量产的行业“不可能三角”,展现出极强的产业化适配能力。此次论坛上DBC3.0Plus技术的全面亮相,不仅彰显了一道新能在n型电池细分领域的技术沉淀,更提供了高效率、低成本、高量产适配的协同解决方案,为新能源产业加速转型赋能。

响应南网调度直采直控要求,CET中电技术“四可”接入方案及产品介绍来源:CET中电技术 发布时间:2025-11-12 10:40:26

CET中电技术通过边缘网关从远动装置采集读取二遥数据,保护测控装置通过网络接入边缘网关;通过RS-485分线器、串口服务器将逆变器接入边缘网关,不影响原来的系统通信,推动“调度直采直控”规定有效落地。未来,CET中电技术作为新型电力系统解决方案供应商,将不断优化技术创新,为分布式光伏电站的高效、安全、稳定运行贡献力量。

镁掺杂氧化镍空穴传输层实现高效率和稳定的钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-11-11 14:09:07

钙钛矿太阳能电池是一种有前景的薄膜光伏器件,可实现高达27.3%的功率转换效率。由氧化镍和Me-4PACz组成的空穴传输层在这些器件中被广泛使用。此外,它们还可以用于与其他太阳能电池制备叠层电池。空穴传输层对PSCs极为重要,HTL自身的性能与稳定性具有重要意义。NiOx具有高透光率,其纳米颗粒稳定性优良。同时,使用NiOx的PSC仅保持初始PCE的62.9%。

新南威尔士大学和 BT Imaging 开发非接触式太阳能电池检测技术来源:钙钛矿工厂 发布时间:2025-11-11 08:51:57

近日,澳大利亚新南威尔士大学的研究人员与该大学衍生公司BTImaging合作,正在通过一项耗资140万澳元的项目推进BC太阳能电池检测技术的落地。

技术破局,价值引领!TCL 中环 T5 Pro 多分片组件重磅发布,重构光伏高效生态来源:TCL中环 发布时间:2025-11-08 22:31:39

11月7日,TCL中环正式推出TCLSolarT5Pro多分片高密度组件,凭借十年技术沉淀与全球领先的量产能力,从功率效率、产品可靠性到客户价值实现全方位升级,为集中式、分布式等全场景应用提供更优解,引发行业广泛关注。此次发布的T5Pro,是TCL中环多分片技术的集大成之作。在实际应用中,T5Pro的抗遮挡性能尤为突出。未来,TCL中环将继续深耕多分片技术路线,以T5Pro为起点,持续释放技术红利,为全球能源转型提供更具价值的绿色解决方案,助力“双碳”目标实现。

禾望电气携手中国绿发,联合发布《采用自同步技术的构网型光伏逆变器白皮书》来源:禾望电气 发布时间:2025-11-06 10:11:18

为将这一理念转化为现实解决方案,禾望电气联合上海中绿新能源科技有限公司,依托主力电源型新能源场站整体解决方案,成功研制全球首个实际应用的构网型光伏逆变器。基于这一重大突破,双方联合发布了《采用自同步技术的构网型光伏逆变器白皮书》。欢迎点击文末的或前往下载阅读《采用自同步技术的构网型光伏逆变器白皮书》,共同探索零碳路径!