【刘工总结】光伏组件问题系列总结——暗电流,反向电流,漏电流的区别

来源:阳光工匠光伏网作者:刘殿宝发布时间:2015-01-21 23:59:59
1.0绪论

电池片内部存在多种电流,如暗电流、反向电流、漏电流等。各种电流都对组件的功率有或大或小的影响,区分各种电流的特性,能够排查引起组件功率异常的原因,有助于问题的彻底解决。

2.0暗电流

暗电流(Dark Current)也称无照电流,是指P-N结在反偏压条件下,没有入射光时产生的反向直流电流。一般由于载流子的扩散产生或者器件表面和内部的缺陷以及有害的杂质引起。扩散产生的原理是在PN结内部,N区电子多,P区空穴多,因为浓度差,N区的电子就要向P区扩散,P区的空穴要向N区扩散,尽管PN结内建电场是阻止这种扩散的,但实际上这中扩散一直进行,只是达到了一个动态的平衡,这是扩散电流的形成。另外当器件的表面和内部有缺陷时,缺陷能级会起到复合中心的作用,它会虏获电子和空穴在缺陷能级上进行复合,电子和空穴被虏获到缺陷能级上时,由于载流子的移动形成了电流,同样有害的杂质在器件中也是起到复合中心的作用,道理和缺陷相同。

暗电流一般在分选硅片时要考虑,如果暗电流过大能说明硅片的质量不合格,如表面态比较多,晶格的缺陷多,有存在有害的杂质,或者掺杂浓度太高,这样的硅片制造出来的电池片往往少子寿命低,直接导致了转换效率低!

对单纯的二极管来说,暗电流其实就是反向饱和电流,但是对太阳能电池而言,暗电流不仅仅包括反向饱和电流,还包括薄层漏电流和体漏电流。




3.0反向饱和电流

反向饱和电流指给PN结加一反偏电压时,外加的电压使得PN结的耗尽层变宽,结电场(即内建电场)变大,电子的电势能增加,P区和N区的多数载流子(P区多子维空穴,N区多子为电子)就很难越过势垒,因此扩散电流趋近于零,但是由于结电场的增加,使得N区和P区中的少数载流子更容易产生漂移运动,因此在这种情况下,PN结内的电流由起支配作用的漂移电流决定。漂移电流的方向与扩散电流的方向相反,表现在外电路上有一个留入N区的反向电流,它是由少数载流子的漂移运动形成的。由于少数载流子是由本征激发而产生的,在温度一定的情况下,热激发产生的少子数量是一定的,电流趋于恒定。

4.0 漏电流


我们都知道,太阳能电池片可以分3层,即薄层(即N区),耗尽层(即PN结),体区(即P区),对电池片而言,始终是有一些有害的杂质和缺陷的,有些是硅片本身就有的,也有的是我们的工艺中形成的,这些有害的杂质和缺陷可以起到复合中心的作用,可以虏获空穴和电子,使它们复合,复合的过程始终伴随着载流子的定向移动,必然会有微小的电流产生,这些电流对测试所得的暗电流的值是有贡献的,由薄层贡献的部分称之为薄层漏电流,由体区贡献的部分称之为体漏电流。




5.0测试暗电流的目的

(1) 防止击穿

如果电池片做成组件时,电池片的正负极被接反,或者组件被加上反偏电压时,由于电池片的暗电流过大,电流叠加后会迅速的将电池片击穿,不过这样的情况很少发生,所以测试暗电流在这方面作用不是很大。

(2)监控工艺

当电池片工艺流程结束后,可以通过测试暗电流来观察可能出现的工艺的问题,前面说过,暗电流是由反向饱和电流和薄层漏电流以及体漏电流组成的,分别用J1,J2,J3表示,当我们给片子加反偏电压时,暗电流随电压的升高而升高,分3个区,1区暗电流由J2起支配作用,2区由J3起支配作用,3区由J1起支配作用,3个区的分界点由具体的测试电压而决定的。为什么暗电流会随电压升高而增大呢?当有电压加在片子上时,对硅片有了电注入,电注入激发出非平衡载流子,电压越大激发的非平衡载流子越多,形成的暗电流越大,暗电流的增长速度随电压越大而变慢,直到片子被击穿。一般我们测试暗电流的标准电压为12V,测得的曲线和标准的曲线相比后,可以的出片子的基本情况。如在1区发现暗电流过大则对应的薄层区出了问题,2区暗电流过大,说明问题出在体区,同样3区出现问题,说明PN做的有问题,扩散,丝网印刷,温度等参数都会影响暗电流,只要知道哪出了问题,就可以根据这去找出问题的原因,所以测试暗电流对工艺的研究是很有用的。(作者微信公众账号:光伏经验网)

作者简介



上一篇:【刘工总结】光伏组件问题系列总结——电池串、汇流条位移的原因及解决方法


下一篇:【刘工总结】光伏组件问题系列总结——太阳能电池板功率计算方法(1月23日发布)

索比光伏网 https://news.solarbe.com/201501/21/201328.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
硅异质结太阳能电池前端电流损耗的系统分析来源:麻园区 发布时间:2025-09-08 09:06:37

硅异质结太阳能电池凭借纳米级本征a-Si:H层的表面钝化与电荷抽取双重特性,可实现超700mV的高开路电压,但前端ITO(透明导电氧化物)、本征a-Si:H(i层)和掺杂a-Si:H(p层)的寄生吸收会导致短路电流密度损失,部分抵消Voc带来的优势。 

华南理工大学何志才教授团队AM:超低暗电流短波红外有机光电探测器助力高品质无创血压监测与光通信来源:知光谷 发布时间:2025-08-25 16:42:04

近年来,短波红外有机光电探测器因其柔性可加工、波段可调等优势,在生物医学监测与高速光通信领域展现出巨大应用潜力。该研究通过分子设计与器件工艺协同优化,成功构建出具有超低暗电流与超高探测率的短波红外有机光电探测器,不仅在微秒级快速响应和宽带宽性能上表现卓越,还在无袖带血压监测与实时光通信等应用中展现出优异的稳定性与实用性。

AFM:低温生长 FAPb₀.₅Sn₀.₅I₃ 单晶用于低暗电流与低检测限的高灵敏度X射线探测器来源:知光谷 发布时间:2025-08-25 16:05:10

离子迁移是阻碍金属卤化物钙钛矿X射线探测器性能与稳定性的普遍问题。所制备的FAPb.Sn.I单晶显示出高达0.95eV的离子迁移活化能,明显高于铅基钙钛矿晶体。本研究首次报道了基于Pb-Sn单晶的X射线探测器,展示了其在抑制离子迁移和暗电流方面的潜力,有望推动稳定、低剂量X射线检测的发展。高离子迁移活化能与低暗电流:FAPb.Sn.I单晶的离子迁移活化能高达0.95eV,暗电流密度低至0.75nAcm,电流漂移极小,优于铅基钙钛矿探测器。

跨界!福达合金拟收购光达电子,进军光伏银浆来源:索比光伏网 发布时间:2025-07-14 09:39:04

7月13日,福达合金(SH:603045)发布公告,公司与浙江光达电子科技有限公司股东王中男、温州创达投资合伙企业(有限合伙)、温州箴义企业管理合伙企业(有限合伙)等签署了《关于浙江光达电子科技有限公司之收购意向

沦为弃子,又一光伏子公司申请破产来源:PV光圈见闻 发布时间:2025-07-11 09:00:00

最新消息,德国太阳能玻璃制造商 Glasmanufaktur Brandenburg(GMB)已申请破产,其母公司称原因是“缺乏明确的政策声明和支持”。

年省300万!这座商场的光伏屋顶成“隐形印钞机”来源:阿特斯阳光电力集团 发布时间:2025-07-10 15:49:18

​面对用电负荷大、电费成本持续攀升的经营痛点,商业综合体如何破局? 位列南京地标商业综合体之一的弘阳广场,给出了亮眼答案:选择与全球光储解决方案领导者阿特斯阳光电力集团合作,在其近8万平方米屋顶成功打造4.6兆瓦分布式光伏电站。这座矗立于六朝古都的“绿色电站”,不仅年节约电费支出超300万元,更成功将商业空间转型为“能源生产者”,打造了商业地产降本增效与绿色发展的标杆样本!

CPIA:我国钙钛矿太阳能电池发展情况来源:钙钛矿材料和器件 发布时间:2025-07-10 15:20:25

近日,中国光伏行业协会分享了年度报告中第七篇,我国钙钛矿太阳能电池发展情况我国钙钛矿太阳能电池发展情况

温控器领导品牌宇电用"精密温控"撬动半导体产业自主可控来源:宇电科技 发布时间:2025-07-10 15:18:22

随着半导体产业加速向中国市场转移,精密温控技术的市场需求持续攀升,中国本土企业正以创新实力重塑市场格局,解决行业关键元器件“卡脖子”问题。厦门宇电自动化科技有限公司(简称“宇电温控科技”)作为国内工业温控领域的“隐形冠军”,历经35载技术沉淀,成功突破半导体级温控技术壁垒,实现了从光伏到半导体设备的全产业链国产化替代。

赞比亚总统希奇莱马来了!晶澳DeepBlue 4.0 Pro全容量供货该国最大项目来源:晶澳科技 JA Solar 发布时间:2025-07-10 15:13:39

在赞比亚凯布韦,非洲炽热阳光照耀下,一座承载着当地能源希望的百兆瓦级光伏电站正式并网发电!近日,由中国电建承建、全部采用晶澳科技DeepBlue 4.0 Pro光伏组件的赞比亚凯布韦100MW光伏项目举行盛大并网仪式。赞比亚总统哈凯恩德·希奇莱马(Hakainde Hichilema)亲临现场揭牌剪彩,盛赞该项目为“赞比亚迈向1000MW光伏目标的关键里程碑”。

使用纳米SnO2 与溶胶-凝胶SnO2双层电子传输层的背接触钙钛矿太阳能电池(BC-PSC)来源:钙钛矿材料和器件 发布时间:2025-07-10 15:09:11

背接触钙钛矿太阳能电池 (BC-PSC) 通过消除前接触电极,从而最大限度地提高光子吸收并改善电荷收集,为传统钙钛矿结构提供了一种有吸引力的替代方案。然而,在 BC-PSC 中实现高效的载流子提取需要先进的界面工程,以最大限度地减少界面缺陷并优化电荷传输。

助力循环经济与可持续发展,隆基携手Rafiqui推动墨西哥光伏组件回收来源:隆基绿能 发布时间:2025-07-10 14:55:31

近日,隆基与墨西哥知名光伏组件回收机构Rafiqui达成合作,将携手推动墨西哥光伏组件回收产业的基础设施发展,为光伏组件的回收与再利用提供切实可行的解决方案,强化区域循环经济与光伏产业的健康可持续发展。