明星材料分子引领光伏产业革命性发展——钙钛矿材料分子与新型太阳能电池效率攀升

来源:中国能源报发布时间:2014-08-06 23:59:59
索比光伏网讯:把太阳能转化为电能是人类孜孜以求的目标,上世纪五十年代贝尔实验室发明了有实际应用价值的硅材料太阳能电池,硅材料太阳能电池不断推陈出新,已经开发出单晶硅、多晶硅和非晶硅薄膜太阳能电池,其中单晶硅太阳能电池实验室最高光电转换效率为25.6%,工业化规模生产组件光电转化效率达15%,非晶硅太阳能电池光电转化效率为10%。硅基太阳能电池是目前在规模化生产和实际应用中占主导地位的太阳能电池类别,有90%的市场占有率。制备单晶硅太阳能电池需要纯度为99.9999%的硅,使得电池成本太高;多晶硅太阳能电池生产也需要使用高真空设备和高洁净厂房,生产成本仍然很高;非晶硅薄膜太阳能电池则有稳定性不好,效率较低的问题。从生产和运行成本上讲,硅基太阳能电池产品目前还不具备和水电、火电等进行完全市场竞争的能力。硅基太阳能电池民用产品产业化发展的瓶颈是成本和污染问题,在过去60多年时间里这些问题并没有得到根本解决,硅基太阳能发电产品目前主要用于航天、军工等高端产品中,民用产品主要靠政府补贴推广。

最近几年,欧美日等国家开始对光伏补贴政策进行调整并开展针对中国产品的“双反”调查,国内硅基太阳能电池厂家马上进入产业发展“寒冬”季节,这个事实说明开发具备真正市场竞争力的新型太阳能电池是产业发展现实需要。

 新型太阳能电池一旦达成效率、成本和寿命方面的突破,会带来光伏产业的革命性变化和实现巨大商业价值。到目前为止,许多新的无机、有机电池材料分子不断被开发出来,涌现出大量新型太阳能技术,其中有多元化合物薄膜太阳能电池(如碲化镉、砷化镓和铜铟镓硒薄膜电池),有机材料薄膜太阳能电池,有机无机杂化太阳能电池(如染料敏化太阳能电池和钙钛矿材料太阳能电池)等,这些第二代和三代太阳能电池实现了10%到20%甚至更高的光电转换效率,已经进入产业化门槛阶段(附图1)。

在各类太阳能电池发展过程中,新材料分子的发现和性能改进,电池结构的优化均不同程度帮助提升太阳能电池的光电转换效率,其中以钙钛矿材料分子表现最为突出。2013年12月20日, 美国《科学》(Science)杂志推出了他们的2013年十大科学突破评选结果,其中钙钛矿(Perovskites),一种1839年由Gustav Rose首次发现并根据俄罗斯矿物学家Lev Perovski名字命名的有机无机杂化分子材料因为在太阳能电池中的应用和电池效率快速提升而入选。“钙钛矿材料便宜、易于制备,已经取得15%的光电转换效率;虽然比目前商业化的硅基太阳能电池效率低,但是钙钛矿型材料太阳能电池效率提升迅速,它和其它类型太阳能电池集成以后可以捕捉和转换更宽光谱范围的太阳光”,美国《科学》杂志这样给出钙钛矿材料入选理由。

事实上,自从2009年日本科学家Tsutomu Miyasaka将钙钛矿材料用于染料敏化太阳能电池作为吸光材料取得3.8%光电转换效率以来,钙钛矿材料太阳电池效率已经跃升到2013年底的15%和目前的19.3%,并且还在迅速攀升中,有望年内突破20%大关。仅仅用了5年时间,钙钛矿材料太阳电池就超越了许多太阳能电池技术数十年所积累的效率增长,这是从无先例和引人注目的。

钙钛矿材料太阳能电池可能引起光伏产业革命性的变局,已经引起了国内外学术界和工业界广泛关注和兴趣。过去五年内钙钛矿材料太阳能电池领域的进展显示出这类材料分子具有改变整个太阳能电池产业格局的潜力,目前众多的国内外研究机构和企业已经开始投入力量进行钙钛矿材料太阳电池技术研究和材料开发,发展增速会明显加快。

最近,国家科技部863项目、973项目和自然科学基金委重大专项均安排了经费支持钙钛矿材料太阳能电池的基础研究和应用开发工作。作为市场主体的企业也敏锐的捕捉到光伏产业未来发展方向的这一变化,凯惠科技发展(上海)有限公司就在染料敏化太阳能电池研发工作基础上迅速投入力量开始了钙钛矿太阳电池材料和器件的研制工作。凯惠科技进行新材料和新能源领域的创新研发工作目的是为企业发展寻找新的增长点,以开发有自主知识产权的技术和产品为目标。凯惠科技研发团队2010年开始和上海交通大学韩礼元教授合作开展了染料敏化太阳能电池和钙钛矿太阳能电池技术、材料与器件的研发工作,已经开发新型有机敏化剂材料三类,制得电池模块和初级应用器件产品原型一批,完成电池关键材料、模块和器件国家发明专利申报七项、国际专利一项。凯惠科技建立起持续的有机敏化剂材料、电荷传输材料和钙钛矿有机-无机杂化电池材料的设计、开发和生产能力,目前已经开始染料敏化太阳能电池应用产品工业设计和中试制造工作,正在找寻相关项目产业发展合作伙伴。

人类面临的能源和环境问题的日益突出,开发包括太阳能在内的新能源和可再生能源成为全世界范围重大课题,随着政府、研究机构和企业投入的不断加大,光伏产业革命性发展结果可以预期。未来各类光伏电池的市场需求将实现共存,效率、成本、寿命、柔性将成为各类技术发展与产业化的重要挑战,找到像钙钛矿材料这样的明星分子和进行光伏器件结构创新将成为产业发展重要的内容。我们认为到2030年,光伏将成为成熟的主要的能源技术,到2050年,光伏电能可能成为全球性主导能源之一,作为市场主体的企业和研究机构携手加上政府的战略性新兴产业支持可以确保和加速这个进程的实现,光伏产业发展的未来定会更加绚烂多彩。

(作者供职于凯惠科技发展(上海)有限公司)
索比光伏网 https://news.solarbe.com/201408/06/213114.html
责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

Nature Electronics: 钙钛矿材料引领应用定制光电探测器走向新未来来源:钙钛矿材料和器件 发布时间:2025-12-22 13:48:28

李亮教授团队在本文中指出:钙钛矿材料依托“高定制潜力、低定制成本”的独特优势,可通过构建面向应用的定制化器件架构充分释放其材料潜能,进而在客制化电子器件领域确立不可替代的地位。本文揭示了钙钛矿材料在功能定制化方向的不可替代地位,更为钙钛矿探测器从“性能对标替代”转向“应用牵引定制化”的商业化路线提供了清晰指引。

肖娟定&蒋晓庆&逄淑平Angew:揭示分子柔韧性在增强吡啶基缺陷钝化以实现高效稳定钙钛矿太阳能电池中的作用来源:知光谷 发布时间:2025-12-22 09:33:25

通过对钙钛矿/C界面进行分子调控以减少缺陷密度,对实现高效稳定的倒置型钙钛矿太阳能电池至关重要。然而,取代基柔韧性对钝化性能的影响仍未得到充分理解。研究发现,柔性中心取代基显著增强了吡啶基团的电子云密度,从而提升了其钝化能力,同时抑制了分子聚集并促进了更好的界面接触。

李亮教授课题组Nature Electronics: 钙钛矿材料引领应用定制光电探测器走向新未来来源:知光谷 发布时间:2025-12-19 09:24:32

李亮教授团队在本文中指出:钙钛矿材料依托“高定制潜力、低定制成本”的独特优势,可通过构建面向应用的定制化器件架构充分释放其材料潜能,进而在客制化电子器件领域确立不可替代的地位。本文揭示了钙钛矿材料在功能定制化方向的不可替代地位,更为钙钛矿探测器从“性能对标替代”转向“应用牵引定制化”的商业化路线提供了清晰指引。

Nat Commun:有机太阳能电池突破20%效率!稠环异构化调控非卤化有机太阳能电池的分子堆积与器件性能来源:知光谷 发布时间:2025-12-17 11:19:27

分子骨架几何结构的微小变化影响有机太阳能电池中的分子间相互作用与性能。本文香港理工大学罗正辉等人研究了三种异构小分子受体,以揭示不同稠环构型如何调控分子堆积、电子耦合和薄膜形成。原位光学测量显示,NaO1在成膜过程中促进快速且连续的结构演化,形成平滑的形貌和均匀的相分布。我们的研究结果凸显了稠环异构化如何决定有机太阳能电池中结构-堆积-性能之间的关系。

中科院孟磊Nat Commun:用于倒置钙钛矿太阳能电池的氧化还原改进型自组装单分子层来源:知光谷 发布时间:2025-12-15 18:17:21

倒置型钙钛矿太阳能电池(p-i-n pero-SCs)采用氧化镍(NiOx)与自组装单分子层(SAM)作为空穴传输层(HTL),已展现出较高的光电转换效率(PCE)。然而,NiOx表面镍价态的多样性给高质量SAM HTL的构建带来了复杂性。

AFM:利用聚合物添加剂调控分子取向,实现效率达20.2%的双层有机太阳能电池来源:知光谷 发布时间:2025-12-15 18:11:01

在有机太阳能电池中,将分子堆积从边缘取向调控至更优的面取向有利于改善垂直电荷传输和光伏性能。然而,由于加工条件复杂,实现这一结构转变的精确控制仍面临重大挑战。

牛津大学Snaith | Nature发文:钙钛矿是很有前景的太阳能电池材料,结合多个钙钛矿层的太阳能电池效率超过 30%!来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-12 23:24:00

屋顶太阳能电池板通常由晶体硅制成,其光电转换效率约为 25%。金属卤化物钙钛矿作为一类半导体材料,被认为是极具潜力的下一代太阳能电池材料,有望实现单晶硅电池难以企及的转换效率。采用钙钛矿制备叠层太阳能电池是一种前景尤为广阔的技术路径,这类电池的核心设计是将多种不同的光活性材料进行分层堆叠。

晁凌峰&夏英东&陈永华Nat Commun:定制界面锚定分子以实现高效稳定钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-12 18:48:31

界面偶极分子在实现高性能钙钛矿太阳能电池(PSCs)中起着至关重要的作用。然而,它们在界面处的随机分布常常限制了其有效调控界面能级和载流子提取的能力。

中节能 | 集团公司战略规划与发展部、科技管理部赴太阳能平邑独立共享储能电站项目调研来源:中节能太阳能 发布时间:2025-12-10 08:49:39

12月4日,集团公司战略规划与发展部副主任赵国峻、科技管理部副主任谢正武一行赴太阳能公司华北区平邑180MW/360MWh独立共享储能电站开展现场调研。下一步,太阳能华北区将全面统筹推进电力交易与储能电站安全运维工作,紧跟集团公司战略部署,以“价值创造”为导向,扎实做好储能电站项目规划与申报、科技研发与市场拓展等重点工作,持续释放储能项目的经济价值、社会价值与生态价值,为集团高质量发展与价值创造注入持续动能。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。