美国研发新型降温材料 导热性提升20倍

来源:盖世汽车网发布时间:2014-04-08 10:35:59

日前,一个由佐治亚理工学院(Georgia Tech)研究学者领导的研究小组研究宣布,其通过电解过程生产制造出了排列整齐的聚合物纳米纤维,该聚合物纳米纤维可以用作导热新材料,其导热效率比常规聚合物导热效率提高了20倍,该经过改善的聚合物纳米纤维导热材料在温度高达200摄氏度时仍具有非常高的可靠性。其中,聚合物材料的分子键通常是杂乱无章的,这降低了聚合物材料中导热声子的平均自由程,因此聚合物材料一般具有绝热特性。

该全新聚合物纳米纤维导热材料在扫描电子显微镜下的结构显示金属极板衬底上生长出的聚噻吩纳米纤维呈阵列排布,该生长阵列中既包含实心纤维又包含中控纤维管,其中不同的纳米纤维直径是由金属极板衬底上小孔的大小所决定的。

该全新聚合物纳米纤维导热材料由于其导热性能的大幅提升,所以可以用来为服务器电子器件、汽车电子、高亮度LED以及一些其他移动电子设备提供散热功能。该全新聚合物纳米纤维导热材料由吸热器(heat sinks)和散热铁盖(heat spreaders)等设备制成,其紧紧贴附设备表面,这样可以有效避免因为其他导热材料热导性不相同而产生的可靠性失效等问题。目前,关于该技术的相关文章已经发表在了《自然纳米技术》(Nature Nanotechnology)期刊杂志。

佐治亚理工学院机械工程助理教授Baratunde Cola作为以上文章的通讯作者,其在文章中介绍道:“随着目前设备的体积越来越小,其热管理方案也越来越复杂。而该全新聚合物纳米纤维导热材料不仅可靠性得到了大幅提升,而且其还具有解决以上问题的强大潜质。该全新聚合物纳米纤维导热材料最终将很有可能为我们设计电子系统提供更多的选择余地。”

该项目研究获得了美国国家科学基金会(National Science Foundation)的支持。其中参与研究的人员由来自佐治亚理工学院(Georgia Institute of Technology)、德克萨斯大学奥斯汀分校(University of Texas at Austin)以及雷神公司(Raytheon Company)的研究人员组成。其中,来自佐治亚理工学院乔治·W·伍德拉夫学院(George W. Woodruff School)的机械工程科学家Virendra Singh和来自伍德拉夫的博士研究生Thomas Bougher是该技术文章的共同第一作者。

虽然非晶体聚合物材料的热传导效率可以通过为聚合物创建规则的晶体结构来得到改善,但是以上规则的晶体结构需要通过纤维拉丝过程得到,并且该结构在生产设备冷热工作循环发生膨胀收缩过程中非常脆弱易碎。

该全新聚合物纳米纤维导热材料由共轭高分子和聚噻吩组成。该全新聚合物纳米纤维导热材料可以使聚合物分子键有序排列提高聚合物内导热声子的平均自由程,并且不会出现晶体结构易碎的特征。该材料的纳米纤维在室温情况下其热导效率可以达到4.4 Wm–1K–1。对于该材料热导效率的大幅提升研究学者表示,正是由于在电解过程中采用了具有纳米级别的电极才使得该纳米纤维材料的分子键方向统一沿纤维轴向方向。

汽车电子稳定工作温度最高可以达到200摄氏度,而该全新聚合物纳米纤维导热材料在200摄氏度温度下导热性能同样通过了实验验证。由于汽车电子芯片与散热片是采用焊锡焊接的,而200摄氏度的温度已经达到了焊锡的回流温度,因此在200摄氏度时如果不能实现良好的散热效果,那么系统中的电子器件可靠性将大大降低。

Baratunde Cola还表示:“普通聚合物一般在低温时便已经开始产生降解作用,所以其通常不会被考虑设计到该类应用中。但是事实上,此共轭聚合物纳米纤维导热材料已经成功应用到了太阳能电池和其他电子设备中,另外还可用于热导材料等。正是因为此共轭聚合物纳米纤维导热材料比传统聚合物分子键连接更强,所以其热稳定性才得到了大幅的提升,以上应用就是充分利用其具有较高的热稳定性等特性。”

该全新聚合物纳米纤维导热材料的晶体结构生长过程是一个多步骤过程。该过程首先需要一块表面覆满小孔的氧化铝电极,而且还需要包含有单体有机前质(所谓有机前质就是原水中的腐植质和一些具有乙酰基团的低分子量有机物)的电解质。在两电极之间添加电势后,两电极上小孔位置处开始吸引单体有机前质从而形成中空的纳米纤维。电解回路中电流的大小和控制生长的时间决定了纳米纤维的长度以及壁厚,而电极上小孔的大小则决定了纳米纤维的直径。根据电极上小孔直径的大小可以得到直径为18-300纳米直径的纳米纤维。

在形成单体有机前质分子键后,纳米纤维的形成过程与电聚合过程是交叉同步进行的,在得到预定的材料后电极即被移除掉。至此得到的物质结构就可以通过水或者其他溶液利用毛细作用或范德华力将其展开并粘附到电子设备上。

Baratunde Cola还表示:“通过电化学聚合处理方法,我们可以使聚合物分子键规整化。而两电极又可以保证聚合物分子键避免出现晶体化重组而使材料始终保持非晶体状态。如果以晶体的定义来看,此全新聚合物纳米纤维导热材料内部结构组织属于非晶体状态,但是其内部结构有序化程度又比真正的非晶体高很多,在我们的实验样品中,其内部结构有序化达到了40%。”

虽然该全新聚合物纳米纤维导热材料新技术目前理论上还不能完全为人所理解且仍然需要进一步的研究发展,但是Baratunde Cola坚信在未来该新技术将得到大范围的应用并实现商业化发展。该全新聚合物纳米纤维导热材料的应用将使可靠性导热材料的厚度达到3微米,而之前常规的导热材料厚度达到了50-75微米。

随着目前电子期间的体积越来越小,功率越来越大,其散热问题也越来越突出。工程师们一直致力于寻找一种具有高效导热效率的新材料。为提高材料的导热效率可以通过提到材料导热率和提高接触面积来解决。Baratunde Cola研发团队就采用了提高接触面积的方法,其研究发现在许多导热效果很好的材料中只有不到1%的导热材料用到了接触导热,Baratunde Cola由此看到了巨大的可能,因此其决定重点研究提高导热材料接触面积的方法。

对此,Baratunde Cola是这样表示的:“由于提高材料自身特性较为复杂,因此我决定放弃提高材料自身的导热率,从而决定研究开发一种能够切实提高导热接触面积的材料。”

Baratunde Cola表示自己是在阅读了一篇介绍“壁虎脚”(gecko foot)应用的文章后,发现这种名为“壁虎脚”的材料可以达到大约80%的接触面积。因此,其决定开始着力研究能够提高导热接触面积的新材料。

该全新聚合物纳米纤维导热材料试验样品在200摄氏度的高温中进行了80次的热循环测试,在测试过程中其导热性能并未出现任何的明显变化。虽然该新材料工作原理机制需要进一步的实验测试,但是Baratunde Cola相信通过吸附得到的聚合物材料强度要比通过粘合得到的聚合物材料强度强很多。

索比光伏网 https://news.solarbe.com/201404/08/220102.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
科学家研发自修复封装材料,阻铅超99%!为钙钛矿光伏技术的可靠性提供了关键解决方案来源:钙钛矿材料和器件 发布时间:2025-12-05 14:36:42

钙钛矿太阳能电池凭借其高光电转换效率与低制造成本,正成为下一代光伏技术商业化进程中的领跑者。因此,亟需开发一种能够快速响应损伤、具备高效自修复能力与主动铅捕获功能的新型封装材料,这已成为推动钙钛矿光伏技术实现安全、可持续商业化所必须突破的关键瓶颈。

25.05%!工程材料研究院1.68eV(电子伏特)宽带隙钙钛矿太阳能电池第3次刷新世界纪录!来源:钙钛矿光链 发布时间:2025-12-04 08:51:05

12月1日获悉,工程材料研究院新能源光伏技术团队自主研制的1.68eV(电子伏特)宽带隙钙钛矿太阳能电池,经权威第三方专业测试机构认证,以25.05%的光电转换效率第3次刷新世界纪录,在钙钛矿光伏技术领域持续领跑,为中国石油加快大型清洁电力基地建设和油田分布式清洁能源替代奠定了坚实基础。

募资7.66亿!莱特光电:用于钙钛矿材料研发及器件验证创新平台建设等项目来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-11-17 13:45:10

据悉,钙钛矿材料研发及器件验证创新平台建设项目总投资额为3,375.83万元,拟使用募集资金额为3,200.00万元,利用现有建筑物和办公场所,用于大面积器件平台新材料验证及量产导入和高通量材料验证平台建设等项目研发。

Angew:手性+自旋=效率翻三倍!大阪大学开创有机太阳能电池新材料策略来源:知光谷 发布时间:2025-11-13 10:47:19

不对称设计已成为提升有机太阳能电池中非富勒烯受体性能的有效策略。最终,基于纯手性双面IE4F的OSC实现了8.17%的能量转换效率,是meso-IE4F的三倍以上。本研究揭示了NFA异构化的重要性,并为同手性不对称NFA提供了新的分子设计策略。研究亮点:首次在有机太阳能电池体异质结中实现CISS效应手性双面NFA在纯膜和BHJ中分别实现高达~70%和~50%的自旋极化率,为OSC中自旋调控开辟新路径。

中山大学莱恩功能材料研究所Nature Sustainability:用内置超分子复合物降低钙钛矿太阳能电池的铅毒性来源:矿物薄膜太阳能电池 发布时间:2025-11-11 11:53:07

该论文通过在钙钛矿太阳能电池(PSCs)中嵌入由2 - 羟丙基-β- 环糊精(HPβCD)和1,2,3,4 - 丁烷四羧酸(BTCA)组成的自交联超分子复合物,同时解决了铅泄漏、铅毒性及器件稳定性问题;改性后PSCs 冠军功率转换效率(PCE)达22.14%,严重破损器件经522 小时动态水冲刷仍保持97% 初始效率且铅泄漏量< 14 ppb(符合美国EPA 标准),铅毒性降至与无铅PSCs 相当水平,还实现了铅的闭环回收,为PSCs 商业化提供可持续路径。

中科院宁波材料所叶继春&杨熹&应智琴NC:通过多功能笼状二铵分子最小化界面能量损失,实现高效钙钛矿/硅叠层太阳能电池 原创 先进光伏 先进光伏 2025年10月29日 21:11 来源:先进光伏 发布时间:2025-10-30 09:34:50

而引入DCl层后,PLQY和QFLS值大幅恢复,证明DCl有效抑制了C60诱导的复合损失。未经极化时,DCl处理的单结钙钛矿电池效率从19.0%提升至21.9%(图a),大面积器件效率达21.0%(图b)。在钙钛矿/硅叠层电池中,DCl处理使效率从28.4%提升至30.5%,经极化后进一步达到31.1%的认证效率。

AM综述:室内钙钛矿太阳能电池的非金属背电极:材料标准、最新进展与未来展望来源:知光谷 发布时间:2025-10-27 13:43:37

本综述澳大利亚昆士兰科技大学王红霞等人系统分析了室内钙钛矿电池中背电极材料的作用,重点探讨了碳基电极与透明导电电极等非金属背电极的最新进展,并围绕性能与能量输出密度、可加工性与扩展性、机械柔性与耐久性等关键挑战,提出界面工程、低温加工与材料创新等策略。

清华大学材料学院-林红团队合作在钙钛矿太阳能电池研究领域取得新进展来源:钙钛矿材料和器件 发布时间:2025-10-21 13:58:54

近日,清华大学材料学院林红教授团队合作在柔性钙钛矿太阳能电池埋底界面二甲基亚砜残留去除方面取得重要研究进展。动态接触角,热重分析及红外光谱等综合分析表明IDPAC分子能够通过化学钝化削弱SnO2与PbI2对DMSO的吸附作用,从而获得埋底界面孔洞消除、残余应力应变松弛的高质量柔性钙钛矿薄膜。清华大学材料学院2022级博士生张子灵为论文第一作者,清华大学材料学院教授林红和厦门大学教授李鑫为论文通讯作者。

AFM:26.7%效率!铜铁矿型空穴传输材料实现钙钛矿的异相成核与外延生长以制备高性能太阳能电池来源:知光谷 发布时间:2025-10-17 09:08:53

在无机空穴传输材料上沉积的钙钛矿薄膜质量长期以来限制了相应器件的性能。基于CuCoO的冠军器件实现了26.70%和25.07%的高功率转换效率。异相成核与外延生长机制:CuCoO与钙钛矿之间近乎完美的晶格匹配促进了高质量钙钛矿薄膜的形成,显著降低了缺陷密度与残余应变。

国际材料顶刊AFM发表西北工业大学黄维院士团队李致朋联合张久俊院士有关 “基于热-动力学策略协同提升SOFC燃料电池性能”的成果来源:知光谷 发布时间:2025-10-15 08:49:14

S-R样品通过降低体相与表面空位密度,将Sr扩散势垒从2.59eV提高至2.83eV,实现偏析动力学“冻结”。此外,压缩晶格使热膨胀系数降至13.3×10K,与YSZ电解质实现近零热失配,显著缓解热循环应力。电化学阻抗谱与Arrhenius分析表明,其ORR活化能降至1.35eV,氧表面交换与电荷转移过程显著加速,证实抑制Sr偏析对阴极活性和耐久性的双重增益。d)S-GLSCF和e)S-RLSCF在700°C、1.0Acm下的稳定性。c)S-GLSCF和S-RLSCF阴极整体ASR的比较。

重大突破 | 一道新能联合研发成功硅基碳纳米管新型高效电池来源:一道新能 发布时间:2025-09-17 17:15:58

研发团队利用单晶硅为衬底,在表面涂敷CNT:PSS薄膜,从而研发成功CNT:PSS/Si高效电池,效率超过23.3%,计算仿真表明该电池具有达到29%效率的潜力。此次合作取得的成果不仅登上国际顶级期刊,更将为未来新型电池的研发及效率突破提供有力支撑。通过持续与高校的联合研究、技术转化与成果落地,进一步强化我国在高效光伏电池技术的话语权,为全球能源技术贡献“一道方案”。