EVA的交联度对组件老化性能的影响

来源:Solarzoom发布时间:2014-01-22 23:59:59
索比光伏网讯:摘  要: 本文分别研究了在紫外、湿热两种老化测试下,不同交联度的EVA样品的力学性能变化情况。主要包括:EVA的拉伸强度、断裂伸长率以及EVA与钢化玻璃/背板的剥离强度等测试。测试结果表明:EVA的交联度对其抗湿热老化、抗紫外老化性能有明显的影响。总的来说:交联度越高其抗湿热老化性能越强,但随着交联度的增大,EVA的紫外老化性能会先增强后降低。并发现EVA的交联度也会随着材料的老化发生一定变化。   关键词:紫外老化、湿热老化、交联度、拉伸强度、断裂伸长率、剥离强度、耐候性。   1 前言   EVA(乙酸和醋酸乙烯酯的共聚物)是目前光伏组件封装工艺中最常用的封装材料,主要是通过在EVA基料中添加紫外吸收剂、紫外稳定剂、抗氧化剂和交联剂等各种不同的添加剂制作而成。EVA在固化过程中会发生交联反应,形成一种三维网状结构,使其各方面性能都得到大幅提高,对太阳能电池起到很好的密封和保护作用,是目前光伏组件的主要封装材料。   在光伏组件户外使用过程中,长期暴露在光、热、氧、水等复杂的环境条件下,EVA要承受长期的户外自然条件的影响,必然会出现不同程度的老化,从而导致光伏组件的封装性能降低。紫外辐照和双85湿热老化是两种有效模拟组件在户外使用过程中的老化衰减的实验,因此本文根据以上两种老化测试,来分析不同交联度的EVA对组件老化性能的影响。   2 实验部分   2.1 主要原材料   选取光伏行业具有代表性的EVA胶膜作为研究样本,配以其他辅助类材料(背板、钢化玻璃、高温布等),来制作样品组件,各原材料主要性能及作用描述如表1。   表1 试验用原材料及其用途描述     2.2 主要仪器设备   本实验在万宇电能科技有限公司综合实验中心完成,实验过程中用使用的主要设备和仪器如表2所示。      2.3 试验设计   紫外老化试验:按照IEC61215中“紫外预处理试验”的程序和要求,使测试样品经受波长在280nm到400nm范围的紫外辐射为15kWh/m2(其中波长为280nm到320nm的紫外辐照为5kWh/m2),同时设定紫外老化试验箱内温度为60±5℃。   高温高湿老化试验:按照IEC61215中“湿-热试验”的程序和要求,将测试样品放入高温高湿试验箱内,设定湿热老化参数(T=85℃,RH(%)=85%RH),使样品经受1000h的高温高湿老化。   本试实验选取国内某知名厂家的EVA胶膜,采用“高温布/EVA/EVA/高温布”层叠方式制作EVA测试样品,采用“玻璃/EVA/EVA/背板”层叠方式压制组件样品。对制备好的试验样品分别进行交联度和力学性能的测试;选取不同交联度的样品,分别进行紫外辐照老化和高温高湿老化,对老化后的样品进行交联度测试和力学性能测试。最后将两种老化模式前后的测试结果进行对比分析。   3 测试与表征   3.1 交联度的测定   交联度是指EVA小分子经交联反应生成三维网状结构固化的程度,一般通过测定EVA的凝胶含量来反映EVA的交联固化情况。   本文采用溶剂萃取法来测定EVA的交联度,其测试原理是将EVA样品置沸腾二甲苯溶液中萃取,未经交联的EVA会溶解到二甲苯溶液中,而已交联的EVA大分子无法溶解,通过残留试样量与试样总量的百分比来确定交联度。   测试步骤:   1. 提取交联后的EVA样品,装入已知重量(记为W1)的120目不锈钢网袋内,并在电子分析天平上称重(记为W2);   2. 将试样袋放入二甲苯溶液中,煮沸萃取5小时;   3. 将试样袋放入真空烘箱内,烘箱设为140℃,烘3小时后取出,称其重量(记为W3)。   交联度计算公式如下:   交联度(%)= [(W3-W1)/(W2- W1)]×100%   3.2 拉伸强度和断裂伸长率的测定   拉伸强度是表征材料抵抗(拉伸)破坏的极限能力,通过测定EVA交联后的拉伸强度可以从一定程度上表征EVA样品的弹性形变能力;断裂伸长率是衡量材料韧性(弹性)的重要指标,具有较大的断裂伸长率的材料在抵抗冲击时有很好的弹性形变量,能有效地保护脆性材料。   本文按国家标准GB/T 528-1998 ,用万能电子拉力试验机测试EVA胶膜的拉伸强度和断裂伸长率,拉伸速率为50mm/min,用冲片机将试验样品制成哑铃型试样,宽度10mm,长度50mm,用千分尺测量样品的厚度。   拉伸强度计算公式如下:   Ts=Fm /(W·T)   式中:Ts-拉伸强度(Mp)   Fm- 最大拉断力(N)   W- EVA小条实际宽度(mm)   T - EVA小条的厚度(mm)   断裂伸长率计算公式如下:   断裂伸长率= (ΔL/L ) ×100%   式中:ΔL-试样在拉断时的拉伸伸长长度(mm)   L- 试样的原始长度(mm)   3.3 剥离强度的测定   剥离强度是表征材料间粘合、密封效果的重要指标。测定EVA与玻璃、EVA与背板剥离强度的样品为“玻璃/EVA/EVA/TPT”层压件,实验样品在太阳能光伏组件层压机上制作完成。   本文按GB/T 2791-1995“胶黏剂180°剥离强度试验方法”进行,用万能电子拉力试验机分别测试EVA与玻璃、EVA与背板间的剥离强度,剥离速度为100mm/min,样品宽度为10mm。   剥离强度计算公式如下:   δ180°= F/B   式中:δ180°- 180°剥离强度,N/cm;   F - 平均剥离力,N;   B - 试样宽度,cm。   4 结果与讨论   4.1 紫外老化试验   本节实验中用到的试验设备为QUV耐候老化箱,测试条件按照IEC61215-2005中光伏组件紫外预处理实验标准执行。紫外老化箱辐照强度为100W/m2,试验箱中设定温度为60℃,当样品接受的累积辐照量达到15kWh/m2后,取出样品进行交联度和力学性能测试,其测试数据如表3所示:    表4 组件样品紫外老化前后对比     从表3和表4的测试数据来看,在EVA交联度大于80%时,紫外老化前后样品的交联度不在明显的变化。从图1的4 幅图表可以看出,随着交联度的增加,EVA的各方面力学性能都有一个先增大后减小的变化趋势,交联度在85%左右时,EVA的力学性能最佳。这也一定程度上决定了EVA耐紫外老化性能的变化趋势。 

图1 紫外辐照前后样品力学性能变化情

  另外,我们发现:交联度低的样品在紫外辐照后,EVA的断裂伸长率、EVA与玻璃的剥离强度比初始值高。这可能是由于EVA内含有紫外交联剂,在紫外光的辐照下继续交联,使其力学性能得到进一步提高;而交联度高的EVA(交联度>85%)由于占据主体地位的聚乙烯绝大部分已完成交联,即使有紫外交联剂和紫外光的协同作用,其交联度也很难得到提高,只会随着光降解反应的进行而缓慢降低。   EVA的拉伸强度、断裂伸长率以及EVA与玻璃/背板的剥离强度在紫外照射前后会出现了不同程度的下降,特别是当EVA的交联度超过80%以后,EVA的拉伸强度、断裂伸长率以及EVA与玻璃/背板的剥离强度下降幅度尤为明显。这主要是一方面由于交联度过高导致胶膜变脆、变硬,EVA在抵抗外力作用时不具备良好的弹性伸展能力,自身力学性能会有所下降;另一方面外界紫外辐照的进行,使得EVA发生光降解反应,三维网状结构发生了链断,物理粘结点变少,所以导致EVA的拉伸强度、断裂伸长率的在紫外辐照来华后均出现了不同程度的降低,EVA与玻璃/背板的剥离强度亦有明显下降。   4.2 高温高湿老化   本节实验中采用全自动高温高湿试验箱对EVA胶膜试样进行老化,该设备有温度、湿度、试验时间的设定和控制,执行IEC61215-2010等光伏组件湿-热试验标准。高温高湿试验箱设定温度为85℃,湿度为85%,测试时间为1000h,然后取出样品进行交联度和力学性能测试,其测试结果如下:   表5 高温高湿老化前后EVA组件样品变化情况    由于高温高湿老化对EVA胶膜的性能影响很大,长期暴露在这样环境下的组件,各方面的性能都会出现不同程度的衰退,这其中也包含其力学性能。在老化前后,样品EVA的交联度也出现了一定的变化。 

图3 双85老化前后EVA与玻璃/背板的剥离强度变化

    通过图2 可以看到,初始交联度低的样品,老化后其交联度有所增加,交联度高的样品,其老化后的交联度有所下降。对于低交联度样品来说,由于EVA中的交联剂反应不彻底,持续85℃、1000h的高温使得EVA中未交联的聚乙烯在引发剂的作用下继续交联,样品的初始交联度越低其上升幅度就越高;而对于高交联度的样品,其交联度很难再次得到提高,反而会在高温高湿的老化条件下发生降解反应。   从高温高湿老化前后EVA与玻璃/背板的剥离强度变化情况(参考表5、图3)可以看出, 不同交联度的组件样品,其EVA与钢化玻璃的剥离强度都会出现大幅的下降,EVA与背板之间剥离强度的降低幅度较小。这说明EVA与背板的融合性能要好于EVA与玻璃之间的融合性能。由于作为无机材料的玻璃表面具有良好的亲水性,水汽从边缘的渗入和慢慢向内部扩散也使得与玻璃粘结的EVA更容易水解,EVA的水解不但会加速其内部网状聚合物的断裂,而且水解产生的乙酸会破坏EVA与玻璃/背板的粘结点,同样使得剥离强度出现大幅下降。   如图3所示,随着交联度的增加,EVA与玻璃/背板的剥离强度表现出先增大后减小的变化规律,EVA-背板之间剥离强度的这种变化趋势尤为明显;对高温高湿老化后的样品重复进行剥离结强度测试,从理论上来说也应该呈现上述规律。   5 结论   总的来说,随着封装材料EVA交联度的增加,组件的耐紫外、耐湿热老化性能都表现出先增强后降低的变化趋势。交联度在85%左右时,其各方面性能表现最佳。   紫外辐照老化对EVA的交联度影响较小,主要由于EVA中的紫外吸收剂和光稳定剂具有协同作用,但其最终的变化趋势是随着紫外辐照时间的延长而呈现缓慢下降的趋势;高温高湿老化对EVA的交联度有一定的影响,交联度低的,经过湿热老化会升高,交联度高的会降低;   (3)紫外辐照老化和高温高湿老化对EVA的力学性能都有较大影响,通过老化前后数据对比发现:   ①紫外辐照老化导致EVA力学性能的下降主要体现在高交联度的样品上,特别是当交联度超过85%后,其各项性能的下降更为显著;   ②高温高湿老化所引起的EVA力学性能的下降主要体现在两方面:一是EVA的交联度越高,其自身的结构越稳定、耐湿热稳定性越强;二是,高温高湿老化对EVA与玻璃的剥离强度影响比较大,主要是由于与玻璃接触的EVA更易水解从而导致粘结点的破坏;   综上所述,本文建议将光伏组件层压工艺的EVA交联度控制在80%~90%之间,以更好的发挥EVA的封装性能,同时保证组件具有良好的耐候性、可靠性。( 本文作者:施懿峻   韦桂奇   曹彦辉   吴宝安  单位:江苏生美集团  万宇电能科技有限公司光伏技术研发中心)   参考文献   [1]  郑智晶。 EVA交联度测定方法的研究[J]. 浙江化工。1989,20(3):30-32.   [2]  张增明,唐景,吕瑞瑞,林杰,彭丽霞,傅冬华。 光伏组件封装EVA的湿热老化研究[J]. 合成材料老化与应用,2011,4(3)   [3]  王荣君。 太阳能电池封装用EVA胶膜的制备与性能表征。 华东理工大学,2011:1-2

索比光伏网 https://news.solarbe.com/201401/23/223330.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
郑州大学张懿强AM:双模式分子调控钙钛矿结晶,实现高效稳定的FAPbI₃太阳能电池与组件来源:知光谷 发布时间:2025-12-04 10:34:21

本研究引入二苯基碳酸酯作为双功能分子调控剂,可同时调控FAPbI薄膜的成核与生长过程。这种协同调控机制获得了均匀、大晶粒的钙钛矿薄膜,并显著降低了缺陷密度。因此,基于DPC的钙钛矿太阳能电池实现了26.61%的冠军效率,优于对照组器件。

AFM:均质化磷官能团化富勒烯用于增强钙钛矿太阳能电池的电子提取性能来源:知光谷 发布时间:2025-12-01 15:57:35

传统的富勒烯C60虽然是钙钛矿太阳能电池中常用的电子提取材料,但它有两个明显的缺点:一是在溶液里容易抱团,溶解性差;二是和钙钛矿的“互动”太弱,导致界面能量损失。磷官能团的引入,就像给富勒烯装了“抓手”,既提高了它的溶解性,又让它能牢牢地抓住钙钛矿表面。效率与稳定性兼得:该策略不仅将电池效率推高至25.62%,更在长达1000小时的连续光照测试中表现出极强的稳定性,为实现高效稳定的钙钛矿太阳能电池提供了新思路。

美对中国部分产品关税的豁免延长1年!附14项太阳能和硅片制造设备清单来源:能慧 发布时间:2025-11-28 14:20:35

当地时间11月26日,美国贸易代表办公室,将把针对中国技术转让和知识产权问题、依据301条款调查所设立的关税的豁免延长至2026年11月10日。现有豁免条款原定于今年的11月29日到期。14项HTSUS税目9903.88.70以及美国注释U.S.note20定义的税号产品,主要是太阳能和硅片制造设备等多个领域,具体如下:

西安电子科技大学张春福&朱卫东&巴延双综述:用于高性能直接X射线检测的毫米级多晶钙钛矿来源:知光谷 发布时间:2025-11-28 11:11:57

近期,西安电子科技大学张春福团队全面回顾了MPMHPX射线探测器的研究进展。最后强调了MPMHPX射线探测器所面临的关键问题,并对其未来发展进行了展望。要点2:总结了MPMHPX射线探测器的成像结果总结了单像素、线阵与平板阵列三类MPMHP成像方案。

南航赵晓明AEM:调控配体吸电子效应设计配体反应性以实现户外稳定的钙钛矿太阳能电池与组件来源:知光谷 发布时间:2025-11-27 13:47:25

2D/3D钙钛矿异质结构提升了钙钛矿太阳能电池的性能。本文南京航空航天大学赵晓明等人研究了芳香铵配体的吸电子强度对钙钛矿界面稳定性的影响。此外,组件在30天户外运行中保持稳定的功率输出,显示出其在实际应用中的潜力。研究亮点:配体吸电子能力调控界面稳定性:通过杂环中氧原子数量的增加,系统调控芳香铵配体的吸电子能力,最强吸电子配体ABDI有效抑制2D相形成并阻止离子互扩散。

超高GFF!钙钛矿激光划线组件 99.3%几何填充因子的倒置钙钛矿太阳能模组 组件运行一年衰减<5%!来源:钙钛矿坊 发布时间:2025-11-26 14:40:00

P1-P2-P3划线定义死区与有效区,越窄死区越高GFF。P2划线激光能量窗口测试,1.57Jcm会伤FTO,0.94Jcm最佳。EDX与SEM证实P2/P3均干净暴露FTO,无残层。TLM测试P2接触电阻仅0.47Ω·cm,传输长度0.27mm,接触优良。4cm模块P2/P3均45μm时GFF达99.3%,PCE13.22%,为连续划线最高值。P3宽度增加系列电阻略升,性能微降,仍保持98%GFF。6-7cell平衡电阻与面积,效率最高;cell数再增性能略降。

段玉伟&彭强AM:原位自交联聚合与开环加成反应精密构建内部封装层,实现高效环保的钙钛矿太阳能电池来源:知光谷 发布时间:2025-11-25 14:32:26

在钙钛矿顶部表面覆盖内部封装层对于提升钙钛矿质量、实现高性能钙钛矿太阳能电池至关重要。本文成都理工大学段玉伟和彭强等人通过硅氧烷基团的自交联聚合和环氧基团的开环加成反应,原位合成了一种新型内部封装层,以克服长期以来被忽视的IEL缺陷,例如消除副产物的不利影响,以及在提高钙钛矿质量和最小化Pb泄漏之间取得平衡。

爱旭股份:2026年底前有望推出26%交付效率的组件产品来源:索比光伏网 发布时间:2025-11-21 20:14:48

近日,爱旭股份在业绩说明会上表示,公司常规ABC组件的量产主流功率区间为655-660W,目前同版型TOPCon组件主流功率范围为620-630W,相比之下ABC组件有约30W左右的功率增益。公司目前第三代满屏ABC组件已陆续交付,其综合功率较公司常规ABC组件再次提升15-20W,继续保持较TOPCon竞品组件的功率优势。公司会继续推动技术研发创新,2026年底前有望推出更高质量、更高产品标准的26%交付效率的组件产品,对应功率700W左右,持续保持产品领先优势。

浙江大学陈红征团队AM:兼容空气的溶剂浴热退火实现高效有机太阳能电池与大面积组件来源:先进光伏 发布时间:2025-11-14 10:54:17

针对这一挑战,浙江大学陈红征团队提出了一种新型后处理策略——溶剂浴热退火,实现了大面积OSC活性层在空气环境下的高效热处理。结论展望该研究开发的STA技术成功解决了传统热退火在空气中导致的薄膜降解与性能下降问题,通过PFD溶剂浴实现均匀加热与有效保护。该空气兼容、可扩展的退火策略为有机太阳能电池的大面积制造与商业化应用提供了切实可行的技术路径。

鼓励采用24%以上的光伏组件,云南省广南县启动865MW光伏项目竞配来源:广南县人民政府 发布时间:2025-11-11 11:19:31

11月10日,云南省文山州广南县发改局发布广南县坝庄、纳弄等11个光伏项目市场化配置优选公告。根据公告,本次优选分为两个标段,包括11个光伏项目,总装机容量86.5万千瓦。

AEL:揭秘无机钙钛矿太阳能电池的离子动态:温度与有机层的影响来源:知光谷 发布时间:2025-11-10 13:45:21

金属卤化物钙钛矿虽具有优异光电性能,但离子迁移导致的稳定性问题亟待解决。研究指出,仅当离子响应完全激活时,两种方法才能可靠估计移动离子密度。BACE测量显示离子迁移率与浓度随温度升高而增加,并可通过离子飞行时间计算Br激活能;Mott-Schottky测试则呈现高频电子缺陷平台与低频离子缺陷平台。该研究成果为无机钙钛矿太阳能电池的稳定性优化提供了关键测量方法与理论依据,对推动钙钛矿光伏商业化进程具有重要意义。