精确的太阳能光伏模拟产生更好的测试结果

来源:中国光伏测试网发布时间:2013-11-21 10:29:02
  为了让太阳能电池板或阵列发电量最大化,在给定的条件下独立逆变器和电网连接逆变器采用一种复杂方法寻找最大功率点,或称为MPP。通过接在太阳能组件或阵列的负载上下波动不断变化找到I-V曲线上的最大功率点,然后逆变器将太阳能组件产生的直流电转换为交流电,交流电要么本地消纳要么并入电网。

确定逆变器如何完成这个任务是非常重要的。一个可行性项目依靠于逆变器的效率要像制造商或者经销商他们所说的那么高效。逆变器百分之几的效率差距就会使一个项目不划算,更糟糕的可能会导致诉讼。

有效地测试光伏逆变器的效率,需要一个既可以精确地模拟太阳能电池板或阵列的输出,又可以提供输出功率所需特定应用程序的太阳能电池阵列模拟器。 使用实际的太阳能电池板或阵列是不实际的,因为控制其输出到一定的程度需要仿真所有条件是不可能的。

现代化模拟器是最大挑战

为了模拟太阳能电池板或阵列,逆变器设计者和制造商使用的现代化的、可供数控电源的、 再加上复杂的控制软件,这些系统可以模拟高达1兆瓦的太阳能电池板阵列。

精确模拟测试逆变器的太阳能电池阵列可以说是一个相当大的挑战。 正如前面提到的,逆变器不断改变它们的输出阻抗跟踪最大功率点。 模拟器必须对太阳能电池阵列的负载变化做出响应。模拟器不仅要保持功率输出还必须跟踪太阳能电池板或阵列的仿真I-V曲线。

使问题复杂化,许多太阳能逆变器会在连接光伏阵列的直流输入端产生交流纹波。对于单相逆变器纹波频率是线路频率(美国为120Hz)的两倍。 通常你会希望有一个电源抑制这个纹波,但对太阳能电池阵列模拟器电源而言千万不能抑制它。

越来越多的逆变器(以及几乎所有的微型逆变器)能否准确测量纹波电压和电流的振幅和相位决定了太阳能阵列MPP的跟踪速度。 与传统的抖动技术(也称为perturbate-and-observe)相比这种方法可以使逆变器以更高的速度确定最大功率点。在阴天辐照度不断变化的条件下以更​​高的整体效率更快的跟踪MPP结果。一旦终端用户对太阳能装置的整体效率非常敏感,所有太阳能逆变器可能将很快使用这种方法。

现代化太阳能电池阵列模拟器的另一个要求是灵活性。 市场上有许多不同类型的太阳能电池板和太阳能电池阵列,每个都具有其自身的特点。 现代太阳能电池阵列模拟器必须是可编程的以满足让他们来决定怎样的逆变器设计可以与这些不同类型的太阳能电池阵列工作。

最后,太阳能电池阵列模拟器需要测量和记录逆变器的交流输出并且矫正直流电源输入数据。关闭测试循环并允许你确定如何才是高效逆变器设计。

保持在曲线上

为了进行准确的测试,一个太阳能电池阵列模拟器的必须严格遵守太阳能阵列或太阳能电池板的输出I-V曲线。也就是说在逆变器测试时它必须像太阳能电池阵列在负载条件下不断变化的响应一样。为了评估模拟器怎样可以更好的做到这一点,你需要考虑三个参数:输出噪声电流,输出电压和电流之间的相位误差和MPP跟踪的精准度。

过度的输出噪声电流影响很大,如果逆变器无法跟踪到最大功率点将导致测试问题。


 
噪声电平的不可操作性是逆变器本身的一个功能。任何光伏模拟器的噪声来源主要是其内部的电源开关噪声及其谐波。 自从逆变器和光伏模拟器有了控制回路他们之间可以相互互动。从逆变器设计的角度来看,逆变器的设计工程师正试图设计一个符合成本效益,高性能变频器。但实际的太阳能电池板不会产生任何噪音,工程师是不太可能增加过滤和相关成本。 噪音等级是非常关键的,70毫安与700毫安的当然是一个量级,这些对逆变器而言是至关重要的。然而,我们已经看到了逆变器设计降低电路成本较的趋势。虽然这没有使逆变器的性能可靠性降低,但它可能使用光伏模拟器进行性能测试成为一个挑战,因为它不够精致。

在现实世界中,即使当逆变器非常迅速地改变负载来跟踪MPP,太阳能电池板或阵列的输出电压和输出电流之间的相位差也基本为零。因此要想准确地模拟一个太阳能电池板或阵列,重要的是即使负载迅速变化模拟器的相位误差也要小于15度。许多模拟器无法做到这一点使得它们不适合用于测试那些使用高扫描频率的逆变器。

当输出电压和输出电流之间的相位误差达到+ / - 90°的极端情况下,测试中的逆变器不仅会在错误的方向上跟踪最大功率点而且会变得不稳定。即使是在逆变器稳定的状态下,明显的相位误差会锁定到曲线的位置而不是MPP。 相位误差在所有的误差中占一定比例。 我们已经观察到这种现象出现在微型逆变器和住宅用逆变器的快速MPP跟踪算法。

另一个重要的规范是最大功率点动态跟踪精度。 这是一个衡量在动态条件下多少模拟器会偏离编程I-V曲线,其中很多因素都可以导致这种不准确性。

 
 

上图比较了目前市场上两种模拟器动态最大功率点的跟踪精度。 该测试采用16 Hz测试频率模拟逆变器的负载效应。 红色线条显示模拟器的理想响应,而蓝线显示的实际响应。 正如你可以看到,两个模拟器之间的存在明显差异,不同的是抖动频率增加过高。

软件的注意事项

除了具有高超的电气规格,太阳能电池阵列模拟器软件易于使用也是很重要的,能提供所需的测试数据。 这些功能包括:

* 更新率。 每秒20次的更新率允许您实时监视逆变器的行为(包括工作点和扫描幅度)。 慢显示是不允许用户查看或表征被测逆变器的动态行为。

* 易于编程。 在开发环境中,最好能够迅速改变测试曲线或开发一个自定义的I-V曲线。 有些模拟器需要用户通过修改javascript代码创建自定义曲线,然后编译和调试。 一个更简单的解决方案是让用户简单地输入参数数据,或导入其他来源的数据,然后让模拟器软件生成曲线。

* 可用的PV曲线/辐照度数据库。 该功能使太阳能电池阵列的软件更容易使用,是一种常见的太阳能电池板的曲线库。 有这样的库意味着你不必生成自己的I-V曲线,就可以轻松地测试怎样的逆变器设计适合各种不同的太阳能电池板。 辐照度数据库具有一组允许用户模拟任何类型的环境条件。


 

* 数据建立。 如果测试逆变器用于太阳能电池板的阵列的情况,模拟器软件应能将阵列模拟的像一个单一的太阳能组件。 在软件中,你应该能够建立该数组,模拟器的输出反映整个阵列的输出。 为了使这个模拟更逼真,能够满足模拟阴影,老化和故障对组件的影响。

无论是在开发和生产阶段,为了得到最好的效果,你需要找到最好的测试设备。 这意味着在现在逆变器上使用一个太阳能阵列模拟器能够精准的跟踪到各种恶劣条件下I-V曲线。 你能够轻松解决这些问题。

光伏逆变器是如何工作的?

光伏(PV)逆变器的工作原理像任何其他类型的逆变器一样。 这就是说逆变器将直流电转换为交流电。 光伏逆变器不同于标准逆变器,一个标准逆变器的直流输入通常是一个稳定的直流电源,诸如电池,而光伏逆变器的DC输入为一个太阳能电池板或阵列。 一个太阳能电池板的直流输出受太阳光辐照度和温度的影响差别很大。
 

 
图中显示了某个辐照度下太阳能电池板的典型I-V特性曲线。蓝色线是太阳能电池板沿着曲线在不同负载的发电量。 在输出短路时,电压为零,所以输出功率为零。 当输出为断开时,电流为零,同样输出功率也为零。

曲线上的某个点处输出功率(等于面板的输出电压乘以面板的输出电流)是最大的。 这一点被称为最大功​​率点。 最大功率点电压和电流提供最大功率。 正如你可以看到,最大功率点位于曲线的膝盖处。

光伏逆变器必须确定任何时间点的MPP,并改变它的输入阻抗,因此在这些点上的太阳能电池板始终在工作。 当它可以做到这一点,光伏逆变器将追踪到太阳能电池板的最大功率。

逆变器使用不同的策略在不同的外部条件下找到最大功率点。 最常见的方法被称为“扰动观察法”。

逆变器使用的“扰动观察法”改变它们的输入阻抗,使太阳能电池板的输出电压以一个小的数值增加或减少。 然后测量输出电流和计算的输出功率, 如果功率增加,逆变器在那个方向进一步进行小的调整直到输出功率不再增加。当条件发生变化时,最大功率点变化,逆变器再次通过这个过程找到最大功率点。

因为这是一个非常动态的过程,造成逆变器测试是相当复杂的。 使用太阳能电池板和光伏阵列做测试是不切实际的,因为它们的输出受太阳辐照度影响。 此外每块太阳能电池板的特性也不尽相同造成比较的困难。

因此使用模拟器才能得到可靠的结果,它可以如实仿真一个太阳能电池板或阵列的输出。 要做到这一点模拟器不仅能够大量的输出功率,响应负载阻抗的变化速度也要非常灵敏。 模拟器可以做到这一点保持曲线并提供最佳的测试效果。
 


索比光伏网 https://news.solarbe.com/201311/21/44891.html
责任编辑:shichunhua
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
美媒:犹他州领导人正在密切关注太阳能开发工作,目标是将该州的能源供应增加一倍来源:SOLARZOOM光储一家 发布时间:2025-12-26 16:01:03

Operation Gigawatt:长臂行动:犹他州州长斯宾塞·考克斯去年宣布,该州将利用“上述任何一种”方式在未来十年内将能源产量翻倍。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

马斯克:计划每年部署100GW的太阳能AI卫星来源:SOLARZOOM光储一家 发布时间:2025-12-23 11:31:57

12月15日,特斯拉CEO埃隆·马斯克在社交平台“X”公开发声,明确表达对地球小型核电反应堆的否定态度,直言相关建造“简直愚蠢至极”。与此同时,他再次力推其太空太阳能AI设想,称太阳作为“天空中巨大的免费核聚变反应堆”,足以满足整个太阳系能源需求,地球上的小型核聚变反应堆本质是经济浪费。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。

紫色光/紫外光线诱导的卤化物钙钛矿太阳能电池钝化失效来源:钙钛矿材料和器件 发布时间:2025-12-22 13:50:34

胺基末端配体,无论是直接使用还是以二维钙钛矿的形式使用,都是钙钛矿钙化剂中的主要缺陷钝化剂,并且显著推动了各种钙钛矿太阳能电池达到最高效率。然而,即便是这些最先进的钙钛矿太阳能电池,在运行过程中仍会迅速降解,这引发了对钝化耐久性的担忧。总之,研究结果揭示了一种普遍机制,即紫色光/紫外光线会导致胺基端配体的去钝化,而这类配体是钙钛矿太阳能电池的主要缺陷钝化剂。

固态钙钛矿太阳能电池的发现与进展来源:钙钛矿材料和器件 发布时间:2025-12-22 13:39:11

2012年,我们首次报道了长期稳定的固态钙钛矿太阳能电池,开辟了一个新领域,并引发了认证功率转换效率超过27.3%,超越了单晶硅太阳能电池的效率。如今,随着钙钛矿/硅叠层器件效率接近35%,钙钛矿太阳能电池已成为满足2050年净零碳排放目标所需太瓦级需求的主要候选者。展望未来,钙钛矿太阳能电池已准备好进入市场,预计钙钛矿/硅叠层器件将首先出现,随后是高效单结器件。固态钙钛矿太阳能电池的发现钙钛矿是具有ABX3通式的化合物。

SusMat综述:环保锡基钙钛矿太阳能电池的开压和填充因子损失来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-22 09:36:56

基于锡的卤化物钙钛矿太阳能电池是一种极具前景的无铅替代方案,具有适宜的带隙和强光吸收特性,但其器件性能受制于显著的开路电压和填充因子损失。尽管相关研究已取得一定进展,但由于氧化化学、缺陷物理及界面能学的耦合作用,锡基钙钛矿太阳能电池的开路电压与填充因子性能仍难以媲美铅基钙钛矿太阳能电池。

肖娟定&蒋晓庆&逄淑平Angew:揭示分子柔韧性在增强吡啶基缺陷钝化以实现高效稳定钙钛矿太阳能电池中的作用来源:知光谷 发布时间:2025-12-22 09:33:25

通过对钙钛矿/C界面进行分子调控以减少缺陷密度,对实现高效稳定的倒置型钙钛矿太阳能电池至关重要。然而,取代基柔韧性对钝化性能的影响仍未得到充分理解。研究发现,柔性中心取代基显著增强了吡啶基团的电子云密度,从而提升了其钝化能力,同时抑制了分子聚集并促进了更好的界面接触。

西湖大学王睿AM:无MA钙钛矿结晶与可扩展刮涂钝化实现高操作稳定性的钙钛矿太阳能模块来源:知光谷 发布时间:2025-12-22 08:52:19

钙钛矿太阳能模块要实现商业化,不仅需要高功率转换效率,还必须具备长期的操作稳定性。本研究西湖大学王睿等人通过三管齐下的策略解决了这些挑战。本研究为在工业相关条件下实现高操作稳定性的钙钛矿太阳能模块建立了机制框架。

苏州大学袁建宇AFM:均匀接触的共自组装单层膜实现效率超过26%的倒置钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-22 08:50:50

咔唑基自组装单层膜作为倒置钙钛矿太阳能电池中的空穴传输层被广泛使用,但它们在溶液中易形成胶束,导致界面均匀性下降。本文苏州大学袁建宇等人设计并成功合成了一系列氟化共轭SAMs,开发出一种用于高性能倒置PSCs的共SAM体系。基于DCA-0F、DCA-1F和DCA-2F共SAMs制备的倒置PSCs分别实现了25.21%、26.11%和25.05%的冠军光电转换效率。共SAM策略实现高效稳定器件:DCA-1F与MeO-2PACz共混形成均匀单层,使倒置PSCs效率提升至26.11%,并在MPP跟踪1000小时后保持约90%初始效率。