“设计中面临的主要挑战即确定材料能否在吸收可见光的同时依然保留极性属性。”戴维斯(Davis)说道,“据理论计算显示,新材料中互相排斥的属性组合其实能够趋于稳定。”
这是一种被称为“钙钛矿型晶体”的结构。绝大部分吸光材料都具有这种对称型的晶体结构——可令原子在固定的版图内上、下、左、右的反复移动。这类功能可令材料变成非极性,且从电子的角度而言,所有方向均看起来相似。因此,对于原子而言,并无一个终极流动的方向。
钙钛矿晶体的金属原子均具有相同的立方晶格,每个晶格内包含一个八面结构的氧原子,而每个氧原子内却含有另一类型的金属原子。这两种金属元素之间的关系可令它们偏离中心,从而使得整个结构具有方向性——富有极性。
“所有好的极性或铁电体材料均具有这种晶体结构。”拉佩表示,“看似非常复杂,其实当你拥有一种含有两种金属元素及氧元素的材料之时,这类现象便会在大自然一直出现。”
经过数次特定钙钛矿型晶体生产失败之后,研究小组成功研制出包含铌酸钾、母材料、极性材料以及镍铌酸钡的具有带隙的终极产品。
研究小组首先使用X射线晶体技术及拉曼散射技术来生产出对称型晶体结构。随后,他们调查该结构的可切换极性与带隙,明确该结构能够产生光伏体效应,增加打破肖克利˙奎伊瑟效率极限”的可能性。
此外,倘若最终产品带隙的大小能够受到镍铌酸钡百分比的影响,那么相比于界面太阳能电池,该产品的优势又增加了一项。
斯帕尼尔(Spanier)指出:“‘母’材料的带隙在紫外线范围之中。不过,仅增加10%的镍铌酸钡,带隙就会移向可见光范围,令转换效率接近理想的位置。这是一个可行的方案。随着我们增添更多的镍铌酸钡,带隙在可见光范围内仍可发生变化。”
另一个解决肖克利˙奎伊瑟效率极限不利影响的方案即将数个带有不同带隙的太阳能电池有效有序的累积在一起。
这些多结光伏电池具有高带隙的顶层,能够捕捉绝大多数有价值的光子。连续层的带隙愈来愈低,获得每个光子总绝大部分的能源。不过,这一切会增加整体的复杂性以及光伏电池的生产成本。
“整个材料家族贯穿整个太阳能光谱。”拉佩解释道,“基于此,我们能够成长出一种材料,且慢慢的改变为化合物,从而令一个单一材料的性能类似于多结光伏电池。”
“材料家族这一成果非同凡响。”斯帕尼尔说道,“因为它包含廉价无毒且充足的元素——这点绝非目前运用于薄膜光伏电池技术中的化合物半导体材料可比。”
该研究由佩恩大学文理学院(Penn'sSchoolofArtsandSciences)化学系教授AndrewM.Rappe及研究专员IlyaGrinberg领导,连同工程与应用科学部主席PeterK.Davies及德雷克塞尔(Drexel)大学材料科学与工程系教授JonathanE.Spanier联合完成。论文报告已发表在《自然》杂志上。
该研究受到本˙富兰克林科技合作伙伴旗下的能源商业化机构、美国能源部旗下的基础科学办公室、美国陆军研究办公室、工程教育协会及海军研究办公室以及国家科学基金会联合支持。此外,化学系的GaoyangGou、材料科学与工程系的D.VincentWest、DavidStein及LiyanWu以及来自德雷克塞尔大学的MariaTorres、AndrewAkbashev、GuannanChen以及EricGallo对此研究亦有贡献。